Cho tam giác DEF có DE=DF kẻ DI là tia phân giác của góc D chứng minh IE=IF
Cho tam giác DEF có DE = DF . Kẻ tia phân giác DI của góc EDF ( I thuộc EF )
a) Chứng minh tam giác EDI = tam giác FDI
b) Chứng minh EI = FI
c) Chứng minh DI vuông góc với EF
a: Xét ΔEDI và ΔFDI có
DE=DF
\(\widehat{EDI}=\widehat{FDI}\)
DI chung
Do đó: ΔEDI=ΔFDI
Cho tam giác DEF cân tại D kẻ DI vg góc vs DF ( I thuộc EF ) chứng minh rằng :
a, IE =IF và góc EDI =góc FDI
b, kẻ IM vg góc vs DE ( M thuộc DE) , IN vuông góc vs DE ( N thuộc DF) chứng minh DM = DN
C, Tam giác IMN là tâm giác gì ? Vì sao?
Cho tam giác DEF có DE = DF . Kẻ tia phân giác DI của góc EDF ( I thuộc EF )
a) Chứng minh tam giác EDI = tam giác FDI
b) Chứng minh EI = FI
c) Chứng minh DI vuông góc với EF
giúp em em đang cần gấp ạ
: Cho tam giác DEF vuông tại D. Tia phân giác của góc DEF cắt cạnh DF tại I. Kẻ IH vuông EF
a) Chứng minh: tam giác DEI = HEI và DI = IH
b) Gọi K là giao điểm của DE và IH. Chứng minh: tam giác IDK = IHF
c) Chứng minh tam giác EKF cân và DH // KF
d) Tìm điều kiện của tam giác DEF để D là trung điểm của EK.
a: Xét ΔDEI vuông tại D và ΔHEI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó: ΔDEI=ΔHEI
Suy ra: ID=IH
b: Xét ΔIDK vuông tại D và ΔIHF vuông tại H có
ID=IH
\(\widehat{IDK}=\widehat{IHF}\)
Do đó: ΔIDK=ΔIHF
c: Ta có: ΔIDK=ΔIHF
nên DK=HF
Ta có: ED+DK=EK
EH+HF=EF
mà ED=EH
và DK=HF
nên EK=EF
hay ΔEKF cân tại E
Xét ΔEKF có
ED/DK=EH/HF
nên DH//KF
Cho tam giác DEF cân tại D. I là trung điểm EF
a) chứng minh DI là tia phân giác góc EDF
b) từ I kẻ IN vuông góc DE; IN vuông góc DF
Chứng minh tam giác IMN cân
c) trên tia NI lấy điểm P sao cho IN=IP
Chứng minh MP song song với DI
a: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là phân giác
b: Xét ΔDMI vuông tại M và ΔDNI vuông tại N có
DI chung
\(\widehat{MDI}=\widehat{NDI}\)
DO đó; ΔDMI=ΔDNI
Suy ra: IM=IN
hay ΔIMN cân tại I
Cho tam giác DEF vuông tại D có DE=6cm, DF=8cm. Vẽ DH vuông góc với EF tại H a,chứng minh tam giác HED đồng dạng với tam giác DEF b,tính EF,DH c, vẽ DI là phân giác của góc EDH cắt EH tại I. Tính IE, IH
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
b) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=6^2+8^2=100\)
hay EF=10(cm)
Ta có: ΔHED\(\sim\)ΔDEF(cmt)
nên \(\dfrac{DH}{FD}=\dfrac{ED}{EF}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow DH=\dfrac{DE\cdot DF}{EF}=\dfrac{6\cdot8}{10}=\dfrac{48}{10}=4.8\left(cm\right)\)
Vậy: EF=10cm; DH=4,8cm
cho tam giác DEF có DE= 5cm, DF = 9cm. DI là đường phân giác (I thuộc EF) . Kẻ EM, FN vuông góc DI
a, Chứng minh tam giác EMI đồng dạng tam giác FNI
b, chứng minh DE.DN= DF.DM
c, qua trung điểm K của EF kẻ đương song song DI, cắt DF tại H, cắt tia ED tại C. Chứng minh EC=FH
d, chứng minh Sdef= 7S dik
Cho tam giác DEF có DE = 5cm; DF = 12cm ; EF = 13cm.
a) Chứng minh tam giác DEF vuông.
b) Tia phân giác của góc E cắt DF tại M. Từ M kẻ MH vuông góc với EF. Chứng minh
DEM = HEM
c) Chứng minh tam giác MDH cân.
Cho tam giác DEF có DE=DF. Tia phân giác của góc D cắt EF tại K. Chứng minh:
a) Tam giác DEK bằng tam giác DFK
b) DK là đường trực của đoạn thẳng EF
c) Qua điểm E, kẻ đường thẳng song song với DF cắt đường thẳng DK tại H. Chứng ming EF là tia phân giác của góc DEF.
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)