Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KHANH QUYNH MAI PHAM
Xem chi tiết
Phạm Thị Thùy Linh
29 tháng 7 2019 lúc 21:13

\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)+3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3x+11\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)\(=\frac{-3x+3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-3\sqrt{x}\left(\sqrt{x}-1\right)+8\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(8-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{8-3\sqrt{x}}{\sqrt{x}-3}\)

KHANH QUYNH MAI PHAM
Xem chi tiết
Phạm Thị Thùy Linh
6 tháng 9 2019 lúc 20:06

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\)\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\)\(\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(\Rightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=-\frac{1}{7}\Rightarrow-7\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)

\(\Rightarrow35\sqrt{x}-14=\sqrt{x}+3\)

\(\Rightarrow34\sqrt{x}=17\)

\(\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy với \(x=\frac{1}{4}\)thì \(A=-\frac{1}{7}\)

erffsdaseefd
Xem chi tiết
Trần Mạnh Tiến
Xem chi tiết
Hiệu diệu phương
5 tháng 8 2019 lúc 11:19

P=\(\left(\frac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)-(x-\sqrt{x})}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{3\sqrt{x}}{\sqrt{x}+2}\right)=\left(\frac{3x-6\sqrt{x}+x+2\sqrt{x}-x+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{3\sqrt{x}}{\sqrt{x}+2}\right)=\left(\frac{3x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right).\frac{\sqrt{x}+2}{3\sqrt{x}}=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+2}{3\sqrt{x}}=\frac{\sqrt{x}-1}{\sqrt{x}-2}\)

KHANH QUYNH MAI PHAM
Xem chi tiết
Phạm Thị Thùy Linh
29 tháng 7 2019 lúc 20:54

\(M=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{x-3\sqrt{x}-4}\)

\(=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\)\(+\frac{3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+4\right)+3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{2x-\sqrt{x}-3-x+2\sqrt{x}+8+3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}-4}\)

Mr Ray
Xem chi tiết
phamnam
Xem chi tiết
Trịnh Thành Công
2 tháng 6 2017 lúc 19:58

\(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\left(ĐKXĐ:x\ne1;x\ge0\right)\)

\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x+3}}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-8+5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)

b)Để \(P< \frac{15}{4}\)thì \(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)

      Ta có:\(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)

          \(\Leftrightarrow\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}-\frac{15}{4}< 0\)

           \(\Leftrightarrow\frac{12\sqrt{x}+32-15\sqrt{x}-30}{4\left(\sqrt{x}+2\right)}< 0\)

            \(\Leftrightarrow\frac{-\left(3\sqrt{x}+2\right)}{4\sqrt{x}+8}< 0\)

                 Vì \(x\ge0;x\ne1\)

                              Do đó \(0< 4\sqrt{x}+8\)

   Mà \(-\left(3\sqrt{x}+2\right)< 0\)

          Vậy \(P< \frac{15}{4}\left(đpcm\right)\)

c)Ta có:\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)

             \(\Leftrightarrow P=\frac{3\sqrt{x}+6+2}{\left(\sqrt{x}+2\right)}\)

             \(\Leftrightarrow P=\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}+\frac{2}{2\sqrt{x}+2}\)

              \(\Leftrightarrow P=3+\frac{2}{\sqrt{x}+2}\)

Vì \(x\ge0;x\ne1\Rightarrow\frac{2}{\sqrt{x}+2}\le1\)

       Do đó \(P\le4\Leftrightarrow x=1\)

                Vậy Max P=4 khi x=1

Edogawa Conan
2 tháng 6 2017 lúc 20:05

P=3x+3√x−9(√x−1)(√x+2) +√x+3√x+2 −√x−2√x−1 

P=3x+3√x−9(√x−1)(√x+2) +(√x+3)(√x−1)(√x+2)(√x−1) −x−4(√x−1)(√x+2) 

P=3x+3√x−9+x+2√x−3−x+4(√x−1)(√x+2) 

P=3x−8+5√x(√x−1)(√x+2) 

P=3x−3√x+8√x−8(√x−1)(√x+2) 

P=(3√x+8)(√x−1)(√x−1)(√x+2) 

P=(3√x+8)(√x+2) 

b)Để P<154 thì (3√x+8)(√x+2) <154 

      Ta có:(3√x+8)(√x+2) <154 

          ⇔(3√x+8)(√x+2) −154 <0

           ⇔12√x+32−15√x−304(√x+2) <0

            ⇔−(3√x+2)4√x+8 <0

                 Vì x≥0;x≠1

                              Do đó 0<4√x+8

   Mà −(3√x+2)<0

          Vậy P<154 (đpcm)

c)Ta có:P=(3√x+8)(√x+2) 

             ⇔P=3√x+6+2(√x+2) 

             ⇔P=3(√x+2)(√x+2) +22√x+2 

              ⇔P=3+2√x+2 

Vì x≥0;x≠1⇒2√x+2 ≤1

       Do đó 

PhungHuyHoang
Xem chi tiết
Huy Anh
Xem chi tiết