Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoa Thiên Cốt
Xem chi tiết
Vinh Thuy Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2021 lúc 10:59

a) Ta có: \(AD=DC=\dfrac{AC}{2}\)(D là trung điểm của AC)

\(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

mà AC=AB(ΔBAC cân tại A)

nên AD=DC=AE=EB

Xét ΔADE có AE=AD(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔADB và ΔAEC có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

AD=AE(cmt)

Do đó: ΔADB=ΔAEC(c-g-c)

c) Ta có: ΔAED cân tại A(gt)

nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAED cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Xét tứ giác BCDE có ED//BC(cmt)

nên BCDE là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang BCDE(ED//BC) có BD=EC(ΔADB=ΔAEC)

nên BCDE là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Học Tập
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết

BÀi 1:

DB là phân giác của góc ADC

=>\(\hat{BDC}=\frac12\cdot\hat{ADC}\)

\(\hat{ADC}=\hat{BCD}\) (ABCD là hình thang cân)

nên \(\hat{BDC}=\frac12\cdot\hat{BCD}\)

ΔBCD vuông tại B

=>\(\hat{BDC}+\hat{BCD}=90^0\)

=>\(\frac12\cdot\hat{BCD}+\hat{BCD}=90^0\)

=>\(\frac32\cdot\hat{BCD}=90^0\)

=>\(\hat{BCD}=90^0:\frac32=60^0\)

=>\(\hat{BDC}=60^0\cdot\frac12=30^0\)

AB//DC

=>\(\hat{ABD}=\hat{BDC}\) (hai góc so le trong)

=>\(\hat{ABD}=30^0\)

DB là phân giác của góc ADC

=>\(\hat{ADB}=\hat{BDC}\)

=>\(\hat{ADB}=30^0\)

Xét ΔABD có \(\hat{ABD}=\hat{ADB}\left(=30^0\right)\)

nên ΔABD cân tại A

=>AB=AD

mà AD=BC(ABCD là hình thang cân)

nên AB=AD=BC=3cm

Xét ΔBCD vuông tại B có \(\sin BDC=\frac{BC}{CD}\)

=>\(\frac{3}{CD}=\sin30=\frac12\)

=>CD=6(cm)

Chu vi hình thang ABCD là:

AB+BC+CD+DA

=3+3+3+6

=9+6=15(cm)

BÀi 2:

a: Ta có: \(\hat{ABD}=\hat{DBC}=\frac12\cdot\hat{ABC}\) (BD là phân giác của góc ABC)

\(\hat{ACE}=\hat{BCE}=\frac12\cdot\hat{ACB}\) (CE là phân giác của góc ACB)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{ABD}=\hat{DBC}=\hat{ACE}=\hat{BCE}\)

Xét ΔABD và ΔACE có

\(\hat{ABD}=\hat{ACE}\)

AB=AC

\(\hat{BAD}\) chung

Do đó: ΔABD=ΔACE

=>AD=AE và BD=CE

Xét ΔABC có \(\frac{AE}{AB}=\frac{AD}{AC}\)

nên ED//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

Hình thang BEDC có BD=EC

nên BEDC là hình thang cân

b: ΔABC cân tại A

=>\(\hat{ABC}=\hat{ACB}\)

=>\(\hat{ABC}=50^0\)

DE//BC

=>\(\hat{BED}+\hat{EBC}=180^0\) (hai góc trong cùng phía)

=>\(\hat{BED}=180^0-50^0=130^0\)

BEDC là hình thang cân

=>\(\hat{BED}=\hat{EDC}\)

=>\(\hat{EDC}=130^0\)

Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

CD chung

AC=BD

Do đó: ΔADC=ΔBCD

=>\(\hat{ACD}=\hat{BDC}\)

=>\(\hat{OCD}=\hat{ODC}\)

=>OC=OD

Ta có: OC+OA=AC

OD+OB=BD

mà OC=OD và AC=BD

nên OA=OB

b: Xét ΔEDC có AB//DC

nên \(\frac{EA}{AD}=\frac{EB}{BC}\)

mà AD=BC

nên EA=EB

Ta có: EA=EB

=>E nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra EO là đường trung trực của AB

TA có; EA+AD=ED

EB+BC=EC

mà EA=EB và AD=BC

nên ED=EC

=>E nằm trên đường trung trực của DC(3)

Ta có: OD=OC

=>O nằm trên đường trung trực của DC(4)

Từ (3),(4) suy ra EO là đường trung trực của DC

Nguyễn Hữu Quang
Xem chi tiết

Bài 2:

loading...

Ta có: ∆ABC là ∆ cân tại A(gt)

=>∠ABC=∠ACB

+Ta có BD là tia pgiac của ∠ABC

=>∠B1=∠B2=1/2∠ABC

+Ta có CE là tia pgiac ∠ACB

=>C1=C2=1/2∠ACB

Xét 

AEC và ΔADB có:

+∠A chung

+AB=AC

+C1=B1

=> ΔAEC = ΔADB

=> AE = AD

=>BCDE là hình thang cân

b) Ta có ∠ACB=∠ABC=50o(do BCDE là hình thang cân)

Ta có: ED//BC

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{AED}\\\widehat{ACB}=\widehat{ADE}\end{matrix}\right.=50^o}\) (SLT)

Mà ∠DEB=∠EDC

Ta có:

+∠DEB+∠AED=180o (kề bù)

=>50o+∠AED=180o

=>∠AED=180o-50o=130o

=>∠AED=∠ADE=130o

Bài 1:

 

loading...

Ta có: AD=BC=3cm (t/c hthang)

Vì AB//CD(gt) nên \(\widehat{ABD}=\widehat{BDC}\left(SLT\right)\)

Mà \(\widehat{ADC}=\widehat{BDC}\) (do BD là tia pgiac góc D)

=>∠ABD=∠BDC 

=>∆ABD cân tại A

=>AD=BC=3cm

Vì ∆DBC vuông tại B

nên ∠BDC+∠C=90o

Mà ∠ADC=∠C (do ABCD là hình thang cân)

và ∠BDC=1/2 ∠ADC

=> ∠BCD=1/2∠C

Khi đó: ∠C+1/2∠C=90o=>∠C=60o

- Kẻ từ B 1 đường thẳng // AD cắt CD tại E

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

Mà ∠BEC=∠ADC(đồng vị)

=>∠BEC=∠C

=>∆BEC cân tại B có ∠C=60o

=>∆BEC là ∆ cả cân cả đều

=> EC=BC=3cm

Ta có: CD = CE + ED = 3 + 3 = 6(cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)

loading...

Xét \(\Delta\)ABD có: \(\widehat{ABD}\) = \(\widehat{BDC}\) ( hai góc so le trong)

                         \(\widehat{ADB}\) = \(\widehat{BDC}\) (BD là phân giác của góc \(\widehat{ABD}\))

            ⇒          \(\widehat{ABD}\) =  \(\widehat{ADB}\) (vì cùng bằng góc BDC)

             ⇒          \(\Delta\) ABD cân tại A ⇒ AB = AD = 3 cm

Gọi E là trung điểm của DC ta có:\(\Delta\)BCD vuông tại B nên

BE = DE = EC (trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

Mặt khác ta có: \(\widehat{ADC}\) = \(\widehat{DCB}\) ( vì ABCD là hình thang cân)

\(\widehat{BDC}\) = \(\dfrac{1}{2}\) \(\widehat{DCB}\) ⇒ \(\widehat{DCB}\) + \(\dfrac{1}{2}\)\(\widehat{DCB}\) = 900 

⇒ \(\widehat{DCB}\) \(\times\) ( 1 + \(\dfrac{1}{2}\)) = 900

⇒ \(\widehat{DCB}\) = 900 : \(\dfrac{3}{2}\) = 600 

Xét \(\Delta\)BCE có BE = EC và  \(\widehat{BCE}\) = 600 nên \(\Delta\)BCE là tam giác đều

⇒ BE = EC = BC = 3 cm 

⇒ DC = BE \(\times\) 2 = 3 \(\times\) 2 = 6 cm

Chu vi của hình thang ABCD là:

3 + 3 + 6 + 3 = 15 (cm)

Kết luận chu vi hình thang là: 15 cm

 

 

 

Nguyễn Quốc Khánh Hoàng
Xem chi tiết
Nguyễn Phương Uyên
28 tháng 2 2020 lúc 8:25

b2 :

a, xét tam giác ABD và tam giác ACE có: góc A chung

AB = AC do tam giác ABC cân tại A (gt)

góc ADB = góc AEC = 90

=> tam giác ABD = tam giác ACE (ch-cgv)

b, tam giác ABD = tam giác ACE (câu a)

=> góc ABD = góc ACE (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc HBC = góc ABC - góc ABD

góc HCB = góc ACB - góc ACE 

=> góc HBC = góc HCB 

=> tam giác HBC cân tại H (Dh)

Khách vãng lai đã xóa
Nguyễn Quốc Khánh Hoàng
28 tháng 2 2020 lúc 8:34

còn câu 1

Khách vãng lai đã xóa
Quỳnh Anh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 13:32

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

Đào Ngọc Văn
Xem chi tiết
ayewenhieulam
16 tháng 9 2023 lúc 14:37

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

Lâm Con
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2021 lúc 21:40

b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có 

BA=CA(ΔBAC cân tại A)

AH chung

Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔDHB vuông tại D và ΔEHC vuông tại E có 

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(Hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

câu a đâu rồi bạn ơi ???