Nghiệm của phương trình 2 cos 2 x + 9 sin x - 7 = 0 là:
A. x = - π 2 + k 2 π , k ∈ Z
B. x = - π 2 + k π , k ∈ Z
C. x = π 2 + k π , k ∈ Z
D. x = π 2 + k 2 π , k ∈ Z
Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Tổng các nghiệm thuộc đoạn [0; 3π] của phương trình 1 - 2 cos^2 x - sin x = 0 là
A. 5/3π. B. 4π. C. 6π. D. 7/2π .
\(1-2cos^2x-sinx=0\)
\(\Leftrightarrow1-2\left(1-sin^2x\right)-sinx=0\)
\(\Leftrightarrow2sin^2x-sinx-1=0\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\dfrac{\pi}{2};\dfrac{7\pi}{6};\dfrac{11\pi}{6};\dfrac{5\pi}{2}\right\}\)
\(\Rightarrow\sum x=6\pi\)
Nghiệm của phương trình sin x - 3 . cos x = 2 . sin 3 x là
![]()
![]()
![]()
![]()
Cho phương trình cos x + sin x = 1 + sin 2 x + cos 2 x . Nghiệm của phương trình có dạng x 1 = a π + k π . x 2 = ± b π + k 2 π b > 0 Tính tổng a + b
A. 1 12
B. 3
C. 7 π 12
D. π 4
Số giá trị nguyên m để phương trình 4 m - 4 . sin x . cos x + m - 2 . cos 2 x = 3 m - 9 . Có nghiệm là:
A. 7
B. 6
C. 5
D. 4
Nghiệm của phương trình cos 2 x + 3 sin x - 2 cos x = 0 là




Đáp án D
Tìm điều kiện để phương trình có nghĩa. Sau đó sử dụng công thức 2 cos 2 x = 1 - 2 sin 2 x để đưa phương trình đã cho về phương trình bậc 2 đối với sin x và giải phương trình này để tìm nghiệm. Bước cuối cùng là đối chiếu điều kiện để kết luận nghiệm.
Điều kiện
![]()
Với điều kiện trên phương trình đã cho trở thành

Nếu

không thỏa mãn điều kiện (1)
Vậy

phương trình \(\cos x-\sin3x=\sqrt{2}\left(\cos x-\sin x\right)\sin4x\) có tổng tất cả các nghiệm \(x\in\left(0;\pi\right)\) là?
\(cosx-\left(3sinx-4sin^3x\right)=\sqrt{2}\left(cosx-sinx\right)sin4x\)
\(\Leftrightarrow cosx-sinx+2sinx\left(2sin^2x-1\right)=\sqrt{2}\left(cosx-sinx\right)sin4x\)
\(\Leftrightarrow cosx-sinx-2sinx\left(cosx-sinx\right)\left(cosx+sinx\right)=\sqrt{2}\left(cosx-sinx\right)sin4x\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(1-2sinx\left(sinx+cosx\right)-\sqrt{2}sin4x\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(1-2sin^2x-2sinx.cosx-\sqrt{2}sin4x\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cos2x-sin2x-\sqrt{2}sin4x=0\right)\)
\(\Leftrightarrow\left(cosx-sinx\right)\left[sin\left(\dfrac{\pi}{4}-2x\right)-sin4x\right]=0\)
\(\Leftrightarrow...\)
Nghiệm của phương trình 3 . cos x + sin x = - 2 là:

![]()
![]()
![]()
Trong các phương trình sau: cos x = 5 - 3 (1); sin x = 1 - 2 (2); sin x + cos x = 2 (3), phương trình nào vô nghiệm?
A. (2)
B. (1)
C. (3)
D. (1) và (2)
Trong các phương trình sau: cos x = 5 - 3 (1); sin x = 1 - 2 (2); sin x + cos x = 2 (3), phương trình nào vô nghiệm?
A. (2).
B. (1).
C. (3).
D. (1) và (2).
Chọn C
Ta có:
nên (1) và (2) có nghiệm.
Cách 1:
Xét: ![]()
nên (3) vô nghiệm.
Cách 2:
Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là: 
(vô lý) nên (3) vô nghiệm.
Cách 3:
Vì 

nên (3) vô nghiệm.