Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 7 2019 lúc 4:58

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2017 lúc 15:20

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2019 lúc 2:54

Đáp án A

Điều kiện  x ≥ − 2

Đặt  t = x + 2 t ≥ 0 ⇒ x = t 2 − 2

Khi đó phương trình tương đương

5 − t 2 + t + 2 − 5 m = 0 ⇔ m = 5 − t 2 + t + 1

Xét hàm số  f t = 5 − t 2 + t + 1 ; t ≥ 0.

Ta có:

f ' t = − 2 t + 1 5 − t 2 + t + 1 ; f ' t = 0 ⇔ t = 1 2

Từ bảng biến thiên ra suy ra phương trình có nghiệm thì  0 < m ≤ 5 5 4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 6 2018 lúc 7:37

Đáp án A

Điều kiện  x ≥ 2

Đặt  t = x + 2   t ≥ 0 ⇒ x = t 2 - 2

Khi đó phương trình tương đương

Từ bảng biến thiên ra suy ra phương trình có nghiệm thì  0 < m < 5 5 4 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2019 lúc 12:22

Nguyễn thị Phụng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 6 2017 lúc 16:58

Đáp án B.

Đặt t = log 2 x , khi đó m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0 ⇔ m + 1 t 2 + 2 t + m - 2 = 0  (*).

Để phương trình (*) có hai nghiệm phân biệt ⇔ a = m + 1 ≠ 0 ∆ ' = 1 - m + 1 m - 2 > 0 ⇔ m ≠ - 1 m 2 - m - 3 < 0 1 .  

Khi đó gọi x 1 ; x 2  lần lượt hai nghiệm của phương trình (*).

Vì 0 < x 1 < 1 < x 2  suy ra t 1 = log 2 x 1 < 0 t 2 = log 2 x 2 > 0 ⇒ t 1 t 2 = c a = m - 2 m + 1 < 0   2 .  

Từ (1), (2) suy ra - 1 < m < 2 ⇔ m ∈ - 1 ; 2  là giá trị cần tìm.

Thảo Nguyên
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2021 lúc 19:35

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 10 2019 lúc 18:22