Đáp án A
Điều kiện x ≥ 2
Đặt t = x + 2 t ≥ 0 ⇒ x = t 2 - 2
Khi đó phương trình tương đương
Từ bảng biến thiên ra suy ra phương trình có nghiệm thì 0 < m < 5 5 4 .
Đáp án A
Điều kiện x ≥ 2
Đặt t = x + 2 t ≥ 0 ⇒ x = t 2 - 2
Khi đó phương trình tương đương
Từ bảng biến thiên ra suy ra phương trình có nghiệm thì 0 < m < 5 5 4 .
Cho phương trình m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0 . Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình đã cho có hai nghiệm thực x1, x2 thỏa 0 < x1 < 1 < x2
A. 2 ; + ∞
B. - 1 ; 2
C. - ∞ ; - 1
D. - ∞ ; - 1 ∪ 2 ; + ∞
Cho hàm số y=f(x) có bảng biến thiên như sau:
Tập hợp tất cả các giá trị thực của tham số m để phương trình f(x) + m = 0 có hai nghiệm phân biệt là
A. - ∞ ; 2
B. [ 1 ; 2 )
C. (1;2)
D. - 2 ; + ∞
Cho hàm số y=f(x) có bảng biến thiên như sau
Tập hợp tất cả các giá trị thực của tham số m để phương trình f(x) + m = 0 có ba nghiệm phân biệt là
A. .
B. .
C.
D. .
Tìm tập hợp tất cả các giá trị thực của tham số m để phương trình 2 x 2 + 2 m x + 2 - 2 2 x 2 + 4 m x + m + 2 = x 2 + 2 m x + m có nghiệm thực
A. ( - ∞ , 0 ] ∪ [ 4 , + ∞ )
B. ( 0 , 4 )
C. ( - ∞ , 0 ] ∪ [ 1 , + ∞ )
D. (0,1)
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(sin x) = m có nghiệm thuộc khoảng 0 ; π là
Tìm tất cả các giá trị thực của tham số m để phương trình 9 x - m . 3 x + 2 m - 5 = 0 có hai nghiệm trái dấu
Cho hàm số y=f(x) có bảng biến thiên như sau
Tập hợp tất cả các giá trị của tham số m để phương trình f(x) + m =0 có 2 nghiệm phân biệt là
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(2sin x +1) = m có nghiệm thuộc nửa khoảng [ 0 ; π 6 ) là:
A. (-2;0]
B. (0;2]
C. [-2;2)
D. (-2;0)
Cho phương trình (m + 1) 16x - 2( 2m - 3) .4x + 6m + 5 = 0 với m là tham số thực. Tập tất cả các giá trị của m để phương trình có hai nghiệm trái dấu có dạng (a; b). Tính P = a.b
A. 4
B. -4
C. 5
D. -5