Tìm số nguyên x, y sao cho:
25 - 2y = 4034 - 2x
Tìm các cặp số nguyên x,y sao cho (2x+2y)/(x^2+y^2)=6/25
Tìm cặp số nguyên x, y sao cho x y - 2 x - 2 y = 0
x y − 2 x − 2 y = 0 ⇔ x − 2 y − 2 = 4
⇒ x ; y = 3 ; 6 , 6 ; 3 , 1 ; − 2 , − 2 ; 1 , 4 ; 4 0 ; 0
Tìm cặp số nguyên x, y sao cho xy - 2x - 2y = 0
x y − 2 x − 2 y = 0 ⇔ x − 2 y − 2 = 4 x ; y = 3 ; 6 , 6 ; 3 , 1 ; − 2 , − 2 ; 1 , 4 ; 4 0 ; 0
Tìm tất cả các cặp số nguyên (x ,y ; ) sao cho (x+y)(3x+2y)2 = 2x + y -1
Lời giải:
Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:
$ab^2=b-a-1$
$\Leftrightarrow ab^2+a+1-b=0$
$\Leftrightarrow a(b^2+1)+(1-b)=0$
$\Leftrightarrow a=\frac{b-1}{b^2+1}$
Để $a$ nguyên thì $b-1\vdots b^2+1$
$\Rightarrow b^2-b\vdots b^2+1$
$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$
$\Rightarrow b+1\vdots b^2+1$
Kết hợp với $b-1\vdots b^2+1$
$\Rightarrow (b+1)-(b-1)\vdots b^2+1$
$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm)
Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$
Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)
Với $b=-1$ thì $a=-1$
Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)
a) Tìm số nguyên x sao cho 2x-1 là bội của x+5.
b) Tìm các số nguyên x và y, biết 2xy-2y+x=11.
a) Vì 2x-1 là bội của x+5 nên 2x-1 \(⋮\)x+5
=> x+5 \(⋮\)x+5
=> ( 2x-1) - ( x+5) \(⋮\)x+5
=> (2x-1) - 2(x+5) \(⋮\)x+5
=> 2x -1 - 2x -10 \(⋮\)x+5
=> -11 \(⋮\)x+5
=> x+5 \(\in\)Ư(11) ={ 1;11; -1; -11}
=> x\(\in\){ -4; 6; -6; -16}
Vậy....
easy vãi không làm được à bạn ???????????
Tìm các số nguyên x;y sao cho : (2x-1).(2y+1) = -35
Tìm cặp số nguyên x,y sao cho:
xy - 2x - 2y = 0
xy+2x+y+11=0xy+2x+y+11=0
⇒x.(y+2)+y+2+9=0⇒x.(y+2)+y+2+9=0
⇒(y+2).(x+1)=−9⇒(y+2).(x+1)=−9
⇒y+2⇒y+2 và x+1∈Ư(−9)x+1∈Ư(−9)
Ta xét các trường hợp sau:
TH1:{y+2=1x+1=−9⇒{y=−1x=−10TH1:{y+2=1x+1=−9⇒{y=−1x=−10
TH2:{y+2=3x+1=−3⇒{y=1x=−4TH2:{y+2=3x+1=−3⇒{y=1x=−4
TH3{y+2=9x+1=−1⇒{y=7x=−2TH3{y+2=9x+1=−1⇒{y=7x=−2
TH4:{y+2=−3x+1=3⇒{y=−5x=2TH4:{y+2=−3x+1=3⇒{y=−5x=2
Vậy (y;x)=(−1;−10);(1;4);(7;−2)(−5;2)
xy + 2x - y + 11 = 0
⇔⇔(xy + 2x) + ( - y - 2) = - 13
⇔⇔(y + 2)(x - 1) = -13
⇒⇒(y + 2, x - 1) = (1, - 13; - 13, 1; - 1, 13; 13, - 1)
⇒⇒(y, x) = (- 1, - 12; - 15, 2; - 3, 14; 11, 0)
xy + 2x + y + 11 = 0xy + 2x + y + 11 = 0
⇒x.(y + 2) + y + 2 + 9 = 0⇒x.(y + 2) + y + 2 + 9 = 0
⇒(y + 2).(x + 1) = −9⇒(y + 2).(x + 1) = −9
⇒y + 2⇒y + 2 và x + 1∈Ư(−9)x + 1∈Ư(−9)
Ta xét các trường hợp sau:
Vậy (y;x) = (−1;−10);(1;4);(7;−2)(−5;2)
cái này bạn lấy đâu thế , sai hay sao ấy
Tìm các cặp số nguyên \(\left(x,y\right)\) sao cho: \(3x^2-y^2-2xy-2x-2y+40=0\)
Ta đặt y = x + k với k \(\inℤ\)
Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0
<=> 3x2 - (x + k)2 - 2x(x + k) - 2x - 2(x + k) + 40 = 0
<=> k2 + 4xk + 4x + 2k - 40 = 0
<=> (k + 1)2 + 4x(k + 1) = 41
<=> (k + 1)(4x + k + 1) = 41
Ta lập bảng ta được :
k + 1 | 1 | 41 | -1 | -41 |
4x + k + 1 | 41 | 1 | -41 | -1 |
x | 10 | -10 | -10 | 10 |
k | 0 | 40 | -2 | -42 |
lại có y = x + k
ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32)