Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Sinh Hùng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 7 2019 lúc 8:34

Chọn A.

+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x1; x2; x3 lập thành một cấp số nhân.

Theo định lý Vi-ét, ta có x1.x2.x3 = 64

Theo tính chất của cấp số nhân, ta có x1x3 = x22. Suy ra ta có x23 = 64 x2 = 4

Thay x = 4 vào phương trình đã cho ta được: 43 – 7m.42 + 2(m2 + 6m).4 – 64 = 0

⇔ m2 – 8m = 0

+ Điều kiện đủ: Với m = 0  thay vào phương  trình đã cho ta được: x3 – 64 = 0 hay x = 4

(nghiệm kép-loại)

Với m = 8 thay vào phương trình đã cho nên ta có phương trình x3 – 56x2 + 224x – 64 = 0   

Giải phương trình này, ta được 3  nghiệm phân biệt lập thành cấp số nhân.

Vậy m = 8 là giá trị cần tìm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 2 2018 lúc 2:21

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 1 2019 lúc 7:14

Chọn B.

Xét hàm số f(x) = x 3 - 3 x 2 + x - m , 

Điểm uốn của đồ thị hàm số là A (1;-1-m).

Phương trình  x 3 - 3 x 2 + x - m   =   0  có ba nghiệm phân biệt lập thành một cấp số cộng.

Nguyễn Hải Vân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 7 2018 lúc 16:22

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2019 lúc 16:57

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 5 2019 lúc 14:23

Chọn đáp án D

Phương pháp

Cho ba số a, b, c lập thành CSN thì ta có: b 2 = a c .

Cách giải

Ta có:  ( x - 1 ) ( x - 3 ) ( x - m ) = 0

Phương trình đã cho có 3 nghiệm phân biệt

+) Giả sử 1; 3; m lập thành 1 CSN tăng

+) Giả sử m; 1; 3 lập thành 1 CSN tăng

+) Giả sử 1; m; 3 lập thành 1 CSN tăng

Vậy có 3 giá trị m thỏa mãn

Nguyễn Hồ Thúy Anh
Xem chi tiết
Nguyễn Bình Nguyên
20 tháng 4 2016 lúc 13:12

Vì 3 nghiệm phân biệt : \(x_1,x_2,x_3\) lập thàng cấp số cộng, nên ta có thể đặt :

\(x_1=x_0-d,x_2=x_0;x_3=x_0+d\left(d\ne0\right)\). Theo giả thiết ta có :

\(x^3+3x^2-\left(24+m\right)x-26-n=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)

                                                 \(=\left(x-x_0+d\right)\left(x-x_0\right)\left(x-x_0-d\right)\)

                                                 \(=x^3-3x_0x^2+\left(3x^2_0-d^2\right)x-x^3_0+x_0d^2\) với mọi x

Đồng nhất hệ số ở hai vế của phương trình ta có hệ :

\(\begin{cases}-3x_0=3\\3x_0^2-d^2=-\left(24+m\right)\\-x_0^3+x_0d^2=-26-n\end{cases}\)  \(\Leftrightarrow\begin{cases}x_0=-1\\3-d^2=-24-m\\1-d^2=-26-n\end{cases}\)  \(\Leftrightarrow\begin{cases}x_0=-1\\m=n\end{cases}\)

Vậy với m = n thì 3 nghiệm phân biệt của phương trình lập thành cấp số cộng