Tìm số hạng không chứa x trong khai triển 2 x 3 + 1 x 2 5 n 2 ,
biết C n 2 C n n - 2 + 2 C n 2 C n 3 + C n 3 C n n - 3 = 100
A. 3630
B. 3603
C. 3360
D. 6330
a)Tìm số hạng không chứa x trong khai triển (x+2/x)10
b)Tìm số hạng không chứa x trong khai triển (x+2/x2)6
c)Tìm hệ số của số hạng chứa x10 trong khai triển (3x3-2/x2)5
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
Trong khai triển nhị thức x + 1 x n , x ≠ 0 , hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Trong khai triển nhị thức x + 1 x n , x ≠ 0 hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Trong khai triển nhị thức ( x + 1 x ) n hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
tìm số hạng không chứa x trong khai triển (5x-2)10
Tìm số hạng không chứa x trong khai triển ( 2x3 + \(\dfrac{1}{x^2}\))10
Số hạng tổng quát trong khai triển:
\(C_{10}^k.\left(2x^3\right)^k.\left(x^{-2}\right)^{10-k}=C_{10}^k.2^k.x^{3k}.x^{2k-20}=C_{10}^k.2^k.x^{5k-20}\)
Số hạng không chứa x \(\Rightarrow5k-20=0\Rightarrow k=4\)
Số hạng đó là: \(C_{10}^4.2^4=...\)
Tìm hệ số của số hạng không chứa x trong khai triển x - 1 x n . Biết có đẳng thức là:
C n 2 C n n - 2 + 2 C n 2 C n 3 + C n 3 C n n - 3 = 100
A. 9
B. 8
C. 6
D. 7
Tìm hệ số của số hạng không chứa x trong khai triển x − 1 x n . Biết có đẳng thức là:
C n 2 C n n- 2 + 2 C n 2 C n 3 + C n 3 C n n − 3 = 100
A. 9
B. 8
C. 6
D. 7
Đáp án C
Ta có: C n k = C n n − k nên đẳng thức:
C n 2 C n n- 2 + 2 C n 2 C n 3 + C n 3 C n n − 3 = 100 ⇔ C n 2 2 + 2 C n 2 C + C n 3 2 = 100
⇔ C n 2 + C n 3 2 = 100 ⇔ C n + 1 3 2 = 100 ⇔ C n + 1 3 = 10 ⇒ n = 4
Số hạng tổng quát trong khai triển: x − 1 x 4 = x + − 1 x 4 là:
T k + 1 = C 4 k x 4 − k − 1 x k = − 1 k C 4 k x 4 − k . x − k = − 1 k C 4 k x 4 − 2 k
Số hạng không chứa x ứng với k thỏa mãn:
4 − 2 k = 0 ⇔ k = 2 và có giá trị là: − 1 2 . C 4 2 = 6