Cho hàm số f ( x ) = m x 4 + 2 x 2 - 1 với m là tham số thực. Có tất cả bao nhiêu giá trị nguyên của m thuộc khoảng (-2018;2018) sao cho hàm số đã cho đồng biến trên khoảng (0;1/2)?
A.2022
B.4032
C.4
D.2014
Cho hàm số f(x) có đạo hàm là hàm f'(x). Đồ thị hàm số f'(x) như hình vẽ bên. Biết rằng f(0) + f(1) - 2f(2) = f(4) - f(3). Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của f(x) trên đoạn [0;4].
A. m = f(4), M = f(2)
B. m = f(1), M = f(2)
C. m = f(4), M = f(1)
D. m = f(0), M = f(2)
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
Cho hàm số f(x) có đồ thị của hàm số f'(x) như hình vẽ. Biết f(0) + f(1) - 2f(2) = f(4) - f(3). Giá trị nhỏ nhất m, giá trị lớn nhất M của hàm số f(x) trên đoạn [0;4] là
A. m = f(4), M = f(1)
B. m = f(4), M = f(2)
C. m = f(1), M = f(2)
D. m = f(0), M = f(2)
Chọn B
Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:
Từ bảng biến thiên ta có
Mặt khác
Suy ra
Cho hàm số y = f(x) liên tục trên R sao cho m a x x ∈ 0 ; 10 f ( x ) = f ( 2 ) = 4 . Xét hàm số g ( x ) = f ( x 3 + x ) − x 2 + 2 x + m . Giá trị của tham số m để m a x x ∈ 0 ; 2 g ( x ) = 8 là
A. 5
B. 4
C. -1
D. 3
cho hàm số y=f(x)=(x+4)|x+2| tìm m để hàm số y=f(x) cắt đường thẳng y=m tại 3 điểm phân biệt
Cho hàm số y = f(x) liên tục trên ℝ sao cho m a x x ∈ [ 0 ; 10 ] f ( x ) = f(2) = 4. Xét hàm số g(x) = f x 3 + x - x 2 + 2 x + m . Giá trị của tham số m để m a x x ∈ [ 0 ; 2 ] g ( x ) = 8 là
A. 5
B. 4
C. -1
D. 3
Chọn D
Xét hàm số
Ta có nên
Vì vậy khi t = 2 ⇔ x = 1
Mặt khác Suy ra khi x = 1
Vậy ⇔ m = 3
Cách 2: Tác giả: Nguyễn Trọn g Lễ; Fb: Nguyễn Trọng Lễ.
Phương pháp trắc nghiệm
Chọn hàm y = f(x) = 4 thỏa mãn giả thiết: hàm số y = f(x) liên tục trên ℝ có
Ta có
Xét hàm số g(x) liên tục trên đoạn [0;2], g'(x) = 0 ⇔ x = 1. Ta có g(0) = 4 + m, g(1) = 5 + m, g(2) = 4 + m
Rõ ràng g(0) = g(2) < g(1) nên
Vậy 5 + m = 8 => m = 3
Cho hàm số f(x) = x 2 + 2x − 3
Xét các mệnh đề sau:
i) f(x − 1) = x 2 − 4
ii) Hàm số đã cho đồng biến trên (−1; + ∞ )
iii) Giá trị nhỏ nhất của hàm số là một số âm.
iv) Phương trình f(x) = m có nghiệm khi m ≥ −4
Số mệnh đề đúng là:
A. 1
B. 2
C. 3
D. 4
Cho hàm số y = f(x) = ( m-1) . x ( m khác 1)
a, Xác định công thức hàm số đã cho biết đồ thị hàm số đó đi qua điểm A(1;3)
b, Tính f(-1); f(\(\frac{-1}{2}\))
c, Tìm x để f(x) = 5; f(x) = 4
cho hàm số y= f(x)=(m+1)x. Tìm m để f(2)=4 . Vẽ đồ thị hàm số với m vừa tìm được
Thay x=2 vào hàm số f(x)=(m+1)x ta được (m+1).2
=> Để f(2)=4 thì m+1 = 4:2 = 2
<=> m = 2-1 = 1
1/ Cho hàm số \(f\)(\(x\))=\(\dfrac{1}{3}\)\(x\)\(^3\)+\(x \)\(^2\)-(\(m\)+1)\(x\)-\(m\)+3. Với \(m\) là tham số. Có bao nhiêu số nguyên \(m\) thuộc đoạn [-10;10] để \(f\)'(\(x\)) ≥ 0, ∀\(x\) ϵ \(R\)
2/ Cho hàm số \(y\) = \(\dfrac{mx+4}{x+m}\). Với \(m\) là tham số. Có bao nhiêu số nguyên m thuộc đoạn [-5;2023] để \(y\)' > 0, ∀\(x\) ϵ (0;+∞).
1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)
\(\Delta=2^2-4\left(-m-1\right)=4m+8\)
Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0
=>m<=-2
=>\(m\in\left\{-10;-9;...;-2\right\}\)
=>Có 9 số
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x + 1 ) ( x 2 + 2 m x + 4 ) . Có bao nhiêu giá trị nguyên âm của tham số m để hàm số y = f ( x ) 2 có đúng một điểm cực trị.
A. 1.
B. 4.
C. 2.
D. 3.