Phương trình c o t x + 3 = 0 có các nghiệm là
![]()
![]()

![]()
Các khẳng định sau đây đúng hay sai:
a. Phương trình 4 x - 8 + 4 - 2 x x 2 + 1 = 0 có nghiệm x = 2.
b. Phương trình x + 2 2 x - 1 - x - 2 x 2 - x + 1 = 0 có tập nghiệm S = {-2; 1}
c. Phương trình x 2 + 2 x + 1 x + 1 = 0 có nghiệm x = - 1
d. Phương trình x 2 x - 3 x = 0 có tập nghiệm S = {0; 3}
a. Đúng
Vì x 2 + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2
b. Đúng
Vì x 2 – x + 1 = x - 1 / 2 2 + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0
⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1
c. Sai
Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1
Do vậy phương trình
không thể có nghiệm x = - 1
d. Sai
Vì điều kiện xác định của phương trình là x ≠ 0
Do vậy x = 0 không phải là nghiệm của phương trình 
cho a,b,c là các số dương đôi một khác nhau có tổng là 12.CMR trong ba phương trình sau có một phương trình vô nghiệm 1 phương trình có nghiệm
(1) x2+ax+b=0
(2)x2+bx+c=0
(3)x2+cx+a=0
Cho các khẳng định sau:
(1) Phương trình |x – 3| = 1 chỉ có một nghiệm là x = 2
(2) Phương trình |x – 1| = 0 có 2 nghiệm phân biệt
(3) Phương trình |x – 3| = 1 có hai nghiệm phân biệt là x = 2 và x = 4
Số khẳng định đúng là:
A. 0
B. 1
C. 2
D. 3
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng
|x – 1| = 0 ó x – 1 = 0 ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.
Vậy có 1 khẳng định đúng
Đáp án cần chọn là: B
Trong các khẳng định sau, số khẳng định đúng là:
a) Tập nghiệm của phương trình x 2 + 3 x x = 0 là {0; 3}
b) Tập nghiệm của phương trình x 2 - 4 x - 2 = 0 là {-2}
c) Tập nghiệm của phương trình x - 8 x - 7 = 1 7 - x + 8 là {0}
A. 1
B. 2
C. 0
D. 3
Cho phương trình \(x^2-\left(2m+3\right)x+m=0\)
a) Chứng minh rằng phương trình đã cho có nghiệm với mọi m.
b) goi x1,x2
là các nghiệm của phương trình. tìm m để T=\(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
a,\(\Delta=\left[-\left(2m+3\right)\right]^2-4m=4m^2+12m+9-4m=4m^2+8m+9\)\(=\)\(4\left(m^2+2m+\dfrac{9}{4}\right)=4\left(m+1\right)^2+5\ge5>0\)
=>pt luôn có 2 nghiệm phân biệt
b,vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m+3\\x1x2=m\end{matrix}\right.\)
\(T=\left(x1+x2\right)^2-2x1x2=\left(2m+3\right)^2-2m=4m^2+12m+9-2m\)\(=4m^2+10m+9=4\left(m^2+\dfrac{10}{4}m+\dfrac{9}{4}\right)=4\left[\left(m+\dfrac{5}{4}\right)^2+\dfrac{11}{16}\right]\)\(=4\left(m+\dfrac{5}{4}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
dấu"=" xảy ra<=>m=-5/4
Họ nghiệm của phương trình tan(x+\(\frac{\pi}{5}\))+ \(\sqrt{3}\)= 0 là?
Phương trình tanx= tanx/2 có họ nghiệm là?
Nghiệm của phương trình √3 + 3tanx =0 có nghiệm là?
Phương trình √3 + tanx = 0 có nghiệm là?
Họ nghiệm của phương trình tan2x - tanx = 0 là?
Phương trình lượng giác 3cotx - √3 = 0 có nghiệm là?
Pt lượng giác 2cotx - √3 = 0 có nghiệm là?
Cho a,b,c là 3 số phân biệt sao cho các phương trình: x2+ax+1=0 và x2+bx+c=0 có nghiệm chung. Đồng thời các phương trình x2+x+a=0 và x2+cx+b=0 cũng có nghiệm chung.
Tính giá trị của biểu thức P=a+b+c
1/ Với giá trị nào của x thì 2 bất phương trình sau đây tương đương: (a-1)x - a+3>0 và ( a+1)x-a+2>0
2/ Bất phương trình: 5x/5 - 13/21 + x/15 < 9/25- 2x/35 có nghiệm là....
3/ Bất phương trình: 5x-1 < 2x/5 + 3 có nghiệm là...
4/ Bất phương trình: (x+4/x^2-9) -(2/x+3) < (4x/3x-x^2) có nghiệm nguyên lớn nhất là...
5/ Các nghiệm tự nhiên bé hơn 4 của bất phương trình (2x/5) -23 < 2x -16
6/ Các nghiệm tự nhiên bé hơn 6 của bất phương trình: 5x - 1/3 > 12 - 2x/3
7/ Bất phương trình: 2(x-1) - x > 3(x-1) - 2x-5 có tập nghiệm là...
8/ Bất phương trình: (3x+5/2) -1< (x+2/3)+x có tập nghiệm là...
9/ Bất phương trình: /x+2/ - /x-1/ < x - 3/2 có tập nghiệm là
10/ Bất phương trình: /x+1/ + /x-4/ > 7 có nghiệm nguyên dương nhỏ nhất là....
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình không biết sin lỗi vạn
Cho a,b,c là các số dương đôi một khác nhau sao cho a+b+c = 12. CMR trong 3 phương trình sau có 1 phương trình có nghiệm, một phương trình vô nghiệm:
\(x^2+ax+b=0\); \(x^2+bx+c=0\); \(x^2+cx+a=0\)
Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm
còn c/m vô nghiệm thế nào z
Cho a,b,c là các số thực dương phân biệt có tổng bằng 3. Chứng minh rằng trong ba phương trình \(x^2-2ax+b=0;x^2-2bx+c;x^2-2cx+a=0\)
có ít nhất một phương trình có hai nghiệm phân biệt và ít nhất một phương trình vô nghiệm
* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có :
pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)
pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)
pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)
\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*)
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)
trái với (*)
Vậy có ít nhất một phương trình có hai nghiệm phân biệt
cái kia chưa bt làm -_-
nhầm r >_< sửa lại chỗ này nhé
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)< 0\\b\left(3-b\right)< 0\\c\left(3-c\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3a< a^2\\3b< b^2\\3c< c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)>3\left(a+b+c\right)-\left(a+b+c\right)=6>0\) :))