Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2018 lúc 2:32

Đáp án đúng : A

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2018 lúc 9:18

Chọn B.

Nguyễn Hoàng Đại
Xem chi tiết
Rin Huỳnh
1 tháng 9 2021 lúc 8:44

Chắc dùng Mincowski

nguyễn thị thu trang
Xem chi tiết
Lầy Văn Lội
19 tháng 6 2017 lúc 23:39

có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)

\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)

\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).

tương tự và cộng lại ta có ngay đpcm.

Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0

Phương Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2018 lúc 9:35

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 4 2017 lúc 16:52

Linh Mai
Xem chi tiết
Loan Trinh
2 tháng 6 2018 lúc 17:45

Chị tham khảo bài giải dưới đây nhé:

x^3/(3y+1) +(3y+1)/16+1/4 \(\ge\)3 . căn bậc 3\(\sqrt[]{\frac{x^3.\left(3y+1\right).1}{\left(3y+1\right).16.4}}\)\(\ge\)3x/4(BĐT cauchy) (1)

y^3/(3z+1)+(3z+1)/16+1/4 \(\ge\)3. căn bậc 3\(\sqrt[]{\frac{z^3.\left(3z+1\right).1}{\left(3z+1\right).16.4}}\)\(\ge\)3y/4 (BĐT cauchy) (2)

z^3/(3x+1) +(3x+1)/16 +1/4 \(\ge\) 3. \(\sqrt[3]{\frac{z^3.\left(3x+1\right).1}{\left(3y+1\right).16.4}}\)\(\ge\)3z/4(BĐT cauchy) (3)

cộng theo vế của các bất đảng thức (1),(2),(3) ta có BĐT tương đương 

   P+3(x+y+z)/16+3/16 \(\ge\)3(x+y+z)/4

\(\Leftrightarrow\)P+3/16\(\ge\)3(x+y+z)/4 -3(x+y+z)/16=9(x+y+z)/16\(\ge\)9/16

\(\Rightarrow\)P+3/16\(\ge\)9/16

\(\Leftrightarrow\)P\(\ge\)3/16

vậy min P=3/16 . Dấu  "=" xảy ra khi và chỉ khi x=y=z=1

Chị Linh Mai ơi em không học lớp 9 nhưng bài này có thể em biết làm . Và bài giải trên chỉ mang tính tham khảo thôi nha chị , chưa chắc đúng đâu . Chị cần tham khỏa các bài khác coi đúng không nhé! Em chúc chị mai thi tuyển sinh làm bài tốt nha!

for kid cartoon
28 tháng 5 2020 lúc 21:19

bạn kia giải sai rồi

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 4 2018 lúc 3:58