Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 8 2017 lúc 17:07

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2018 lúc 13:22

Chọn C

Ta có: nên (1) và (2) có nghiệm.

Cách 1:

Xét: nên (3) vô nghiệm.

Cách 2:

Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:

(vô lý) nên (3) vô nghiệm.

Cách 3:

Vì 

nên (3) vô nghiệm.

Rell
Xem chi tiết
Linhhh
19 tháng 9 2021 lúc 19:16

b)

(sin2x + cos2x)cosx + 2cos2x - sinx = 0

⇔ cos2x (cosx + 2) + sinx (2cos2 x – 1) = 0

⇔ cos2x (cosx + 2) + sinx.cos2x = 0

⇔ cos2x (cosx + sinx + 2) = 0

⇔ cos2x  = 0

⇔ 2x =  + kπ ⇔ x =  + k  (k ∈ )

Linhhh
19 tháng 9 2021 lúc 19:18

c) 

Đáp án:

x=π6π6+ k2ππ

và x= 5π65π6+k2ππ (k∈Z)

Lời giải:

sin2x-cos2x+3sinx-cosx-1=0

⇔ 2sinxcosx-(1-2sin²x) +3sinx-cosx-1=0

⇔ 2sin²x+2sinxcosx+3sinx-cosx-2=0

⇔ (2sin²x+3sinx-2)+ cosx(2sinx-1)=0

⇔ (2sinx-1)(sinx+2)+cosx(2sinx-1)=0

⇔ (2sinx-1)(sinx+cosx+2)=0

⇔ sinx=1212

⇔ x=π6π6+ k2ππ

hoặc x= 5π65π6+k2ππ (k∈Z)

(sinx+cosx+2)=0 (vô nghiệm do sinx+cosx+2=√22sin(x+π4π4)+2>0)

Linhhh
19 tháng 9 2021 lúc 19:20

Nhầm, câu c

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 3 2019 lúc 8:14

Ngọc anh kk
Xem chi tiết
Lâm Như
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2018 lúc 15:12

sin x + cos x = 1 + sin x.cos x

⇔ sin x.cos x – sin x – cos x + 1 = 0

⇔ (sinx. cosx –sinx)- (cosx -1 ) =0

⇔ sinx. (cosx – 1) – (cosx -1) = 0

⇔ (sin x – 1)(cos x – 1) = 0

Giải bài 3 trang 179 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm Giải bài 3 trang 179 sgk Đại số 11 | Để học tốt Toán 11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 3 2017 lúc 8:05

Đáp án đúng : A

kim mai
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2021 lúc 20:29

Với \(cosx=0\) ko phải nghiệm

Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)

\(\Rightarrow tan^2x-4\sqrt{3}tanx+1=-2\left(1+tan^2x\right)\)

\(\Leftrightarrow3tan^2x-4\sqrt{3}tanx+3=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2018 lúc 16:25