Rút gọn phân thức: Q = x 10 - x 8 - x 7 + x 6 + x 5 + x 4 - x 3 - x 2 + 1 x 30 + x 24 + x 18 + x 12 + x 6 + 1
\(\frac{x^{10}+x^5+1}{x^8+x^4+1}\)
Rút gọn phân thức
\(=\dfrac{\left(x^{10}-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)}{x^8+x^4+1}\)
\(=\dfrac{x\left(x^9-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{x^8+2x^4+1-x^4}\)
\(=\dfrac{x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{\left(x^4+1\right)^2-x^4}\)
\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x^7+x^4+x+x^2\right)+\left(x^2+x+1\right)}{\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)}\)
\(=\dfrac{\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^7+x^2+x^4+x\right)+1\right]}{\left(x^4+2x^2+1-x^2\right)\left(x^4-x^2+1\right)}\)
\(=\dfrac{\left(x-1\right)\left(x^7+x^4+x^2+x\right)+1}{\left(x^2+1-x\right)\left(x^4-x^2+1\right)}\)
Rút gọn phân thức x^2-2x-8/2x^2+9x+10
\(\dfrac{x^2-2x-8}{2x^2+9x+10}\)
\(=\dfrac{x^2-4x+2x-8}{2x^2+4x+5x+10}\)
\(=\dfrac{\left(x-4\right)\left(x+2\right)}{\left(x+2\right)\left(2x+5\right)}\)
\(=\dfrac{x-4}{2x+5}\)
Rút gọn phân thức x^2-2x-8/2x^2+9x+10
\(\dfrac{x^2-2x-8}{2x^2+9x+10}\)
\(=\dfrac{\left(x-4\right)\left(x+2\right)}{2x^2+4x+5x+10}\)
\(=\dfrac{\left(x-4\right)\left(x+2\right)}{\left(x+2\right)\left(2x+5\right)}\)
\(=\dfrac{x-4}{2x+5}\)
rút gọn phân thức :
Q= \(\frac{x^{10}-x^8-x^7+x^6+x^5+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}\)
Rút gọn phân thức Q= 1+x^4+x^8+...+x^2020/1+x^2+x^4+...+x^2022
Q = \(\dfrac{1+x^4+x^8+...+x^{2020}}{1+x^2+...+x^{2022}}\)
Đặt A = 1 + \(x^4\) + \(x^8\) +...+ \(x^{2020}\)
Đặt B = 1 + \(x^2\) + ...+ \(x^{2022}\)
Thì Q = \(\dfrac{A}{B}\)
A = 1 + \(x^4\) + \(x^8\) + ...+ \(x^{2020}\)
A.\(x^4\) = \(x^4\) + \(x^8\) +....+ \(x^{2020}\) + \(x^{2024}\)
A.\(x^4\) - A = \(x^{2024}\) - 1
A = \(\dfrac{x^{2024}-1}{x^4-1}\)
B = 1 + \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\)
B.\(x^2\) = \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) + \(x^{2024}\)
B\(x^2\) - B = \(x^{2024}\) - 1
B = \(\dfrac{x^{2024}-1}{x^2-1}\)
Q = \(\dfrac{\dfrac{x^{2024}-1}{x^4-1}}{\dfrac{x^{2024}-1}{x^2-1}}\)
Q = \(\dfrac{x^{2024}-1}{x^4-1}\) \(\times\)\(\dfrac{x^2-1}{x^{2024}-1}\)
Q = \(\dfrac{1}{x^2+1}\)
RÚT GỌN
\(P=\frac{2x^2-8}{x-2}\)
a) rút gọn phân thức P
b) tìm giá trị của x để giá trị của phân thức P =2
\(P=\frac{2x^2-8}{x-2}=\frac{2.\left(x^2-2^2\right)}{x-2}=\frac{2.\left(x-2\right).\left(x+2\right)}{x-2}=2x+4\left(x\ne2\right)\)
\(P=2x+4=2\Rightarrow2x=-2\Rightarrow x=-1\)
Rút gọn phân thức :
\(Q=\dfrac{x^{10}-x^8-x^7+x^6+x^5+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}\)
\(\frac{x^{10}-x^8-x^7+x^6+x^6+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}=\frac{(x^{10}-x^8+x^6)-(x^7-x^5+x^3)+(x^4-x^2+1)}{ (x^{30}+x^{18}+x^{24})+(x^{12}+x^6+1)} \)
=\(\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+x^6+1)(x^{18}+1 )}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+2x^6+1-x^6) (x^6+1)(x^{12}-x^6+1)}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{ (x^6-x^3+1)(x^6+x^3+1)(x^2+1)(x^4-x^2+1)(x^12-x^6+1 )} \)
=\(\frac{1}{(x^6+x^2+1)(x^2+1)(x^{12}-x^6+1)}\)
rút gọn phân thức sau x10-x8-....-x2-1/ x4-1
Rút gọn phân thức sau:
\(\frac{x^{10}-x^8-x^7+x^6+x^5+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}\)
Rút gọn phân thức sau:
\(\frac{x^8+x+1}{x^7+x^2+1}\)
Cả tử và mẫu có nhân tử chung là x2 + x + 1 rút gọn cái đó đi là được