Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2018 lúc 15:26

Phương pháp

- Tính chiều cao A 'H .

- Tính thể tích khối lăng trụ  V   =   S A B C . A ' H

Cách giải:

Tam giác ABC vuông cân đỉnh A cạnh AB = AC = 2a nên BC 

Tam giác AHA' vuông tại H  nên

Vậy thể tích khối lăng trụ

Chọn B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2017 lúc 4:52

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 6 2018 lúc 12:08

Đáp án D

Gọi H là trung điểm của BC, khi đó từ giả thiết ta có A'H  (ABC). Ta có:

A'H = a 3 =>  V A . BCC ' B '   =   V ABC . A ' B ' C '   -   V A ' . ABC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 9 2017 lúc 16:57

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2018 lúc 11:29

Chọn B.

Phương pháp:

- Xác định góc 60 0 (góc giữa hai đường thẳng cùng vuông góc với giao tuyến).

- Tính diện tích đáy và chiều cao rồi suy ra thể tích theo công thức V = Sh.

Cách giải:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 10 2017 lúc 17:59

Chọn B

Phương pháp:

- Xác định góc 60 o   (góc giữa hai đường thẳng cùng vuông góc với giao tuyến).

- Tính diện tích đáy và chiều cao rồi suy ra thể tích theo công thức V = Sh.

Cách giải:

Gọi D, E lần lượt là hình chiếu của H, A lên BC.

Nên

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2018 lúc 3:00

Liinh Liinh
Xem chi tiết
Chanh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 22:56

Gọi D là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AD\perp BC\\AD=\dfrac{a\sqrt{3}}{2}\end{matrix}\right.\)

Gọi E là trung điểm BD \(\Rightarrow\) HE là đường trung bình tam giác ABD

\(\Rightarrow\left\{{}\begin{matrix}HE||AD\Rightarrow HE\perp BC\\HE=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{4}\end{matrix}\right.\)

Mà \(B'H\perp\left(ABC\right)\Rightarrow B'H\perp BC\Rightarrow BC\perp\left(B'HE\right)\)

\(\Rightarrow\widehat{B'EH}\) là góc giữa (BCC'B') và đáy

\(\Rightarrow\widehat{B'HE}=60^0\)

\(\Rightarrow B'H=HE.tan60^0=\dfrac{3a}{4}\)

\(AA'||BB'\Rightarrow AA'||\left(BCC'B'\right)\Rightarrow d\left(AA';BC\right)=d\left(AA';\left(BCC'B'\right)\right)=d\left(A;\left(BCC'B'\right)\right)\)

Mà H là trung điểm AB \(\Rightarrow AB=2HB\Rightarrow d\left(A;\left(BCC'B'\right)\right)=2d\left(H;\left(BCC'B'\right)\right)\)

Từ H kẻ \(HK\perp B'E\)

Do \(BC\perp\left(B'HE\right)\Rightarrow\left(BCC'B'\right)\perp\left(B'HE\right)\)

 Mà B'E là giao tuyến (B'HE) và (BCC'B')

\(\Rightarrow HK\perp\left(BCC'B'\right)\Rightarrow HK=d\left(H;\left(BCC'B'\right)\right)\)

Hệ thức lượng:

\(\dfrac{1}{HK^2}=\dfrac{1}{B'H^2}+\dfrac{1}{HE^2}\Rightarrow HK=\dfrac{B'H.HE}{\sqrt{B'H^2+HE^2}}=\dfrac{3a}{8}\)

\(\Rightarrow d\left(AA';BC\right)=2HK=\dfrac{3a}{4}\)

Nguyễn Việt Lâm
15 tháng 3 2022 lúc 22:56

undefined