Chọn B.
Phương pháp:
- Xác định góc 60 0 (góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
- Tính diện tích đáy và chiều cao rồi suy ra thể tích theo công thức V = Sh.
Cách giải:
Chọn B.
Phương pháp:
- Xác định góc 60 0 (góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
- Tính diện tích đáy và chiều cao rồi suy ra thể tích theo công thức V = Sh.
Cách giải:
Cho khối lăng trụ ABC.A′B′C′ có đáy là tam giác vuông cân tại A, BC = 2a và hình chiếu vuông góc của A′ lên mặt phẳng (ABC) trùng với trung điểm cạnh BC, góc giữa AA′ và mặt đáy bằng 60 ° . Thể tích khối lăng trụ đã cho bằng
A. 3 a 3 3
B. a 3 2
C. 3 a 3 2
D. 3 a 3
Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi, A C = 2 a , B A D ^ = 120 ∘ . Hình chiếu vuông góc của điểm B trên mặt phẳng A ' B ' C ' D ' là trung điểm cạnh A' B' góc giữa mặt phẳng A C ' D ' và mặt đáy lăng trụ bằng 60 ∘ . Tính thể tích V của khối lăng trụ A B C D . A ' B ' C ' D '
A. V = 2 3 a 3
B. V = 3 3 a 3
C. V = 3 a 3
D. V = 6 3 a 3
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A với AB = a; AC = a 3 . Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC và góc giữa AA’ tạo với mặt phẳng ( ABC ) bằng 60 o . Gọi V là thể tích khối lăng trụ ABC.A'B'C'. Tính V 3 + V a 3 - 1
A. 1
B. a
C. a 2
D. a 3
Cho lăng trụ ABC.A′B′C′ có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của điểm A′ lên mặt phẳng (ABC) trùng với tâm O của đường tròn ngoại tiếp tam giác ABC, biết O A ' = a . Tính theo a thể tích V của khối lăng trụ đã cho.
A. 3 a 3 4 .
B. 3 a 3 3 .
C. 3 a 3
D. 3 a 3 12
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có góc giữa hai mặt phẳng (A′BC) và (ABC) bằng 60 0 , cạnh AB = 2. Thể tích V của khối lăng trụ ABC.A′B′C′ là
A. 3 3 4
B. 3
C. 3
D. 3 3
Cho hình lăng trụ ABC.A′B′C′ có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của A′ xuống mặt phẳng ABC trùng với trung điểm của cạnh AB. Mặt bên (ACC′A′) tạo với đáy một góc 60 0 . Tính thể tích khối lăng trụ ABC.A′B′C′.
A. 3 a 3 2
B. 3 a 3 3 2
C. a 3 3 2
D. a 3 3 3
Cho hình lăng trụ ABC A'B'C' có AA'=a, góc giữa cạnh bên và mặt đáy bằng 60°. Tam giác ABC vuông tại C và góc B A C ^ = 60 ° . Hình chiếu vuông góc của B' lên mặt phẳng A B C trùng với trọng tâm của Δ A B C . Tính thể tích khối tứ diện A'ABC theo a
A. V A ' A B C = 3 a 3 208
B. V A ' A B C = 27 a 3 208
C. V A ' A B C = 81 a 3 208
D. V A ' A B C = 9 a 3 208
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AB = 1, AC = 2, cạnh A A ' = 2 . Hình chiếu vuông góc của A’ trên mặt đáy (ABC) trùng với chân đường cao hạ từ B của tam giác ABC. Thể tích V của khối lăng trụ đã cho là
A. V = 21 12
B. V = 7 4 C
C. V = 21 4
D. V = 3 21 4
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác vuông đỉnh B, AB=a,BC=2a, hình chiếu vuông góc của đỉnh A' trên mặt phẳng (ABC) là trung điểm H của AB, M là trung điểm BC, góc giữa B'B và mặt phẳng (A’B’C’) bằng 60 ∘ . Khoảng cách giữa AM và A'C bằng
A. 5 a 10
B. 3 5 a 10
C. 10 a 10
D. 5 a 5