Cho x ∈ R và các mệnh đề P : x < 1 , Q : x 2 < 1 . Mệnh đề nào là đúng trong các mệnh đề sau?
A. P là điều kiện đủ của Q
B. P là điều kiện cần của Q
C. P là điều kiện cần và đủ của Q
D. Q là điều kiện cần của P
Bài 4. Trong các mệnh đề sau, mệnh đề nào là đúng ? Giải thích ? Phát biểu các mệnh đề đó thành lời: a) x R x2 , 0. b) x R x x2 , c) x Q 2 ,4x 1 0 . d) n N n n 2 , . e) f) x R x x2 x R x x ,5 3 1 2 , 1 0
Xem xét các mệnh đề sau đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
a) \(\exists x\in Q\), \(4x^2-1=0\)
b) \(\exists n\in N\), \(n^2+1\) chia hết cho 4
c) \(\exists x\in R\), \(\left(x-1\right)^2\ne x-1\)
d) \(\forall n\in N\), \(n^2>n\)
e) \(\exists n\in N\), n(n+!) là một số chính phương
Với mỗi mệnh đề chứa biến sau, tìm những giá trị của biến để nhận được một mệnh đề đúng và một mệnh đề sai.
a) \(P(x): "x^2=2"\)
b) \(Q(x): "x^2+1>0"\)
c) \(R(n): "n+2\) chia hết cho 3” (n là số tự nhiên).
a)
+) \(x = \sqrt 2 \) ta được mệnh đề là một mệnh đề đúng.
+) \(x = 0\) ta được mệnh đề là một mệnh đề sai.
b)
+) \(x = 0\) ta được mệnh đề là một mệnh đề đúng.
+) Không có giá trị của x để là một mệnh đề sai do \({x^2} + 1 > 0\) với mọi x.
c) chia hết cho 3” (n là số tự nhiên).
+) \(n = 1\) ta được mệnh đề chia hết cho 3” là một mệnh đề đúng.
+) \(n = 5\)ta được mệnh đề chia hết cho 3” là một mệnh đề sai.
Xem xét các mệnh đề sau đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
a) \(\forall x\in R\), \(x^2-x+1>0\)
b) \(\exists n\in N\), (n +2) (n+1 ) = 0
c) \(\exists x\in Q\), \(x^2=3\)
d) \(\forall n\in N\), \(2^n\ge n+2\)
Trong không gian với hệ tọa độ Oxyz , cho ba mặt phẳng (P)=x+y+2z+1=0 ; (Q): x=y-z+2=0, (R): x-y=5=0. Trong các mệnh đề sau, mệnh đề nào sai?
A. R ⊥ Q
B. P ⊥ Q
C. P ⊥ R
D. P / / R
Tìm mệnh đề phủ định của các mệnh đề sau và xét tính đúng sai của chúng:
a) P : ”∀x ∈ R, ∃y ∈ R : x + y > 0.
b) Q : ”∃x ∈ R, ∀y ∈ R : x + y > 0.
Giả sử A, B là tập số và x là một số đã cho. Tìm các cặp mệnh đề tương đương trong các mệnh đề sau:
P = "x ∈ A ∪ B " ; S = "x ∈ A và x ∈ B"
Q = "x ∈ A \ B" ; T = "x ∈ A hoặc x ∈ B"
R = "x ∈ A ∩ B" ; X = "x ∈ A và x ∉ B"
Các mệnh đề tương đương:
P ⇔ T
R ⇔ S
Q ⇔ X
Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x \in \mathbb{R},{x^2} > 0\)
b) \(\exists x \in \mathbb{R},{x^2} = 5x - 4\)
c) \(\exists x \in \mathbb{Z},2x + 1 = 0\)
a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”
b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”
c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x = - \frac{1}{2} \notin \mathbb{Z}\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”
Cho hai tập hợp E = {x ∈ R: f(x) = 0}; F = {x ∈ R: g(x) = 0}; H = { x ∈ R: f(x)2 + g(x)2 = 0}. Trong các mệnh đề sau, mệnh đề đúng là
A. H = E ∪ F.
B. H = E ∩ F.
C. H = E \ F.
D. H = F \ E.
Đáp án: B
f(x)2 + g(x)2 = 0 ⇔ f(x) = 0 và g(x) = 0. Nghĩa là H là tập hợp bao gồm các phần tử vừa thuộc E vừa thuộc F hay H = E ∩ F