Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2017 lúc 3:20

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 11 2019 lúc 3:34

 Ta có:

 

Bảng biến thiên

Ta có y(-2) = -1; y(2) =1

Dựa vào bảng biến thiên ta có

Tích giá trị lớn nhất và giá trị nhỏ nhất là: 1.(-1) = - 1.

Chọn B.

07 - DQDinh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 6 2018 lúc 4:39

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2019 lúc 3:29

Đáp án C

Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy

Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2019 lúc 2:11

Đáp án C

écc éc
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2021 lúc 20:25

\(-1\le sin\left(x^2\right)\le1\Rightarrow\)\(0\le\sqrt{1-sin\left(x^2\right)}\le\sqrt{2}\Rightarrow-1\le y\le\sqrt{2}-1\)

\(y_{min}=-1\) khi \(sin\left(x^2\right)=1\Rightarrow x=\pm\sqrt{\dfrac{\pi}{2}+k2\pi}\) (\(k\in N\))

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(x^2\right)=-1\Rightarrow x=\pm\sqrt{-\dfrac{\pi}{2}+k2\pi}\) (\(k\in Z^+\))

Đinh Văn Nam
Xem chi tiết
🍀Cố lên!!🍀
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 8 2017 lúc 5:15

Đáp án B