cho tam giac abc vuong can tai a . mot dg thg d bat ki di qua a ,kẻ bh vg goc voi d tai h ck vg goc voi d tai k cmr bh^2+ck^2 có gia trị ko đổi
cho tam giac abc vuong can tai a. mot duong thang d bat ki luon di qua a. ke bh va ck vuong goc voi duong thang d. cmr tong bh^2 + ck^2 co gia tri khong doi
Giải:
Ta có: \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=180^o\) ( góc bẹt )
\(\Rightarrow\widehat{A_1}+\widehat{A_3}=90^o\left(\widehat{A_2}=90^o\right)\) (1)
Trong \(\Delta CAK\left(\widehat{K_1}=90^o\right):\widehat{A_3}+\widehat{C_1}=90^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A_1}=\widehat{C_1}\)
Xét \(\Delta HAB,\Delta KCA\) có:
\(\widehat{A_1}=\widehat{C_1}\left(cmt\right)\)
\(\widehat{H_1}=\widehat{K_1}=90^o\)
AB = AC ( gt )
\(\Rightarrow\Delta HAB=\Delta KCA\) ( c.huyền - g.nhọn )
\(\Rightarrow BH=AK;HA=CK\) ( các cạnh t/ứng )
Áp dụng định lí Py-ta-go vào \(\Delta ACK\left(\widehat{K_1}=90^o\right)\) ta có:
\(AK^2+CK^2=AC^2\)
\(\Rightarrow BH^2+CK^2=AC^2\)
\(\Rightarrow BH^2+CK^2\) có giá trị không đổi ( đpcm )
Vậy...
cho tam giac abc vuong can tai a co ab= 3 cm. ke 1 dg thang d bat ki di qua a. ke bh,ck vuong goc voi d. tinh bh2+ck2
cho tam giac abc vuong can tai a,ab =3 cm .qua a ke duong thang d ko cat canh bc.ke bh vuong goc voi d tai h,ck vuong goc voi d tai k
a) chung minh bh song song ck
b)tinh do dai canh bc va so do g minh
c)chung minh goc hab = goc ack
d)chung minh bh +ck =hk
cac ban thong cam ,t ko viet dc dau
cho tam giac ABC can tai A. Qua B va C lan luot ke BH, CK vuong goc voi AC, AB tai H va K. Hai duong thang nay cat nhau tai I. CMR: AI la tia phan giac goc A
GT | Cho \(\Delta\)ABC cân tại A. Qua B và C lần lượt kẻ BH, CK vuông góc với AC, AB tại H và K. Hai đường này cắt nhau tại I. |
KL | CMR : AI là tia phân giác góc A. |
Có : \(\Delta\)ABC cân tại A.
\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Leftrightarrow\widehat{ABH}+\widehat{HBC}=\widehat{ACK}+\widehat{KCB}\)(1)
Xét \(\Delta\)BHC và \(\Delta\)CKB có :
\(\widehat{BHC}=\widehat{CKB}=90^0\)
\(\Leftrightarrow\widehat{KCB}+\widehat{KBC}=\widehat{HBC}+\widehat{HCB}=90^0\)
Mà : \(\widehat{KBC}=\widehat{HCB}\)
\(\Leftrightarrow\widehat{KCB}=\widehat{HBC}\)
+) \(\Leftrightarrow\Delta\)IBC cân tại I +) Từ (1)
\(\Leftrightarrow IB=IC\)(2) \(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)(3)
Lại có do \(\Delta\)ABC cân tại A
\(\Leftrightarrow AB=AC\) (4)
Từ (2);(3) và (4) \(\Rightarrow\Delta\)ABI = \(\Delta\)ACI (cgc)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\left(cgtu\right)\)
\(\Leftrightarrow\)AI là phân giác góc A ( đpcm )
bai 1co tam giac abc can tai a tren tia doi cua cac tia bc va cb lay hai diem d va e sao cho ce = bd goi m la trung diem cua bc tu b va c ke bh vuong goc voi ad va ck vuong goc voi ae .cm 3 dt bh ck va am cung di qua mot diem
bai 2 cho tam giac abc vuong tai a goc c bang 30 do duong cao ah tren doan hc lay diem d sao cho hd=hb tu c ke ce vuong goc voi ad cmr
a, tam giac abd deu
b,eh song song voi ac
bai 3 cho tam giac abc co goc a = 90 do qua a ke dt d tu b va c ke bd vuong goc voi dt d va ce vuong goc voi dt d tinh do dai de theo bd va ce
bai 4 cho tam giac abc vuong tai a hai duong phan giac bm va cn tu m va n ke mmphay va nnphay vuong goc voi bc cmr goc mphayanphay bang 45 do
Cho tam giac ABC vuong can tai B, co duong trung tuyen BM. Goi D la mot diem bat ki thuoc canh AC. Ke AH, CK vuong goc BD (H,K thuoc duong thang BD) . Chung minh rang:
a) BH=CK
b) Tam giac MHK vuong can
Cho tam giac abc vuong tai A . Ke AH vuong goc voi BC tai H ke tia phan giac AD cua goc BAH (D thuoc BH)
a,Chung minh goc DAC=ADC
b,Ke phan giac cua goc C cat AD tai K
Chung minh CK vuong goc voi AD
Cho tam giac ABC vuong can tai A , trung tuyen AM.E thuoc BC,BH,CK vuong goc voi AE , (H,K thuoc AE ) .Cmr :tam giac MHK vuong can .
cho tam giac ABC can tai A . Ve BH vuong goc voi AC (H thuoc AC) ,CK vuong goc voi AB(K thuoc AB) a/chung minh rang AH=AK b/ goi i la giao diem cua BH va CK .chung minh ^KAI=^HAI c/duong thang AC cat BC tai P .chung minh AI vuong goc voi BC tai P