Giải:
Ta có: \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=180^o\) ( góc bẹt )
\(\Rightarrow\widehat{A_1}+\widehat{A_3}=90^o\left(\widehat{A_2}=90^o\right)\) (1)
Trong \(\Delta CAK\left(\widehat{K_1}=90^o\right):\widehat{A_3}+\widehat{C_1}=90^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A_1}=\widehat{C_1}\)
Xét \(\Delta HAB,\Delta KCA\) có:
\(\widehat{A_1}=\widehat{C_1}\left(cmt\right)\)
\(\widehat{H_1}=\widehat{K_1}=90^o\)
AB = AC ( gt )
\(\Rightarrow\Delta HAB=\Delta KCA\) ( c.huyền - g.nhọn )
\(\Rightarrow BH=AK;HA=CK\) ( các cạnh t/ứng )
Áp dụng định lí Py-ta-go vào \(\Delta ACK\left(\widehat{K_1}=90^o\right)\) ta có:
\(AK^2+CK^2=AC^2\)
\(\Rightarrow BH^2+CK^2=AC^2\)
\(\Rightarrow BH^2+CK^2\) có giá trị không đổi ( đpcm )
Vậy...