cho tam giac ABC can tai A , ve trung tuyen AM. tu M ke ME vuong goc voi AB tai E , ke MF vuong goc voi AC tai F . a,chung minh tam giac BEM= tam giac CFM b, chung minh am la trung truc cua EF c,tu B ke dung thang vuong goc voi AB tai B ,tu C ke duong thang vuong goc voi AC, hai duong nay cat nhau tai D. chung minh A,M,D thang hang d,so sanh ME voi DC
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng