Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 3 2017 lúc 12:39

Đáp án D

Ta có MC là hình chiếu vuông góc của MC’ lên mp (ABC)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 7 2018 lúc 12:06

Đáp án D

Ta có MC là hình chiếu vuông góc của MC’ lên mp (ABC)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 1 2019 lúc 8:44

Đáp án là D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2017 lúc 7:08

Đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2018 lúc 8:05

Đáp án A

Gọi I,J lần lượt là trung điểm cạnh BC và SA

Ta có  A C ⊥ S B D , EI // AC, MJ//AC =>  E I ⊥ ( S B D ) ,   M J ⊥ ( S B D )

Suy ra, IJ là hình chiếu vuông góc của EM lên (SBD)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2017 lúc 10:45

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 8 2017 lúc 14:56

Đáp án C

Phương pháp:

- Gắn hệ trục tọa độ Oxyz, tìm tọa độ các điểm E, M.

- Sử dụng công thức tính góc giữa đường thẳng và mặt phẳng:  sin α = n → . u → n → . u →

Cách giải:


Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 20:58

a) \(BCC'B'\) là hình chữ nhật \( \Rightarrow BC\parallel B'C'\)

\( \Rightarrow \left( {AB,B'C'} \right) = \left( {AB,BC} \right) = \widehat {ABC} = {60^ \circ }\).

b)

\(\Delta AA'B\) vuông tại \(A \Rightarrow \tan \widehat {ABA'} = \frac{{AA'}}{{AB}} = \frac{a}{a} = 1 \Rightarrow \widehat {ABA'} = {45^ \circ }\)

Vậy \(\left( {A'B,\left( {ABC} \right)} \right) = {45^ \circ }\).

c) \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot BC,CC' \bot CM\)

Vậy \(\widehat {BCM}\) là góc nhị diện \(\left[ {B,CC',M} \right]\).

\(\Delta ABC\) đều \( \Rightarrow \widehat {BCM} = \frac{1}{2}\widehat {ACB} = {30^ \circ }\).

d) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)

\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).

\( \Rightarrow CM \bot \left( {ABB'A'} \right)\)

\(\Delta ABC\) đều \( \Rightarrow CM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\).

\(\left. \begin{array}{l}CC'\parallel AA'\\AA' \subset \left( {ABB'A'} \right)\end{array} \right\} \Rightarrow CC'\parallel \left( {ABB'A'} \right)\)

\( \Rightarrow d\left( {CC',\left( {ABB'A'} \right)} \right) = d\left( {C,\left( {ABB'A'} \right)} \right) = CM = \frac{{a\sqrt 3 }}{2}\)

e) \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CM\)

\(\Delta ABC\) đều \( \Rightarrow CM \bot AB\).

\( \Rightarrow CM \bot \left( {ABB'A'} \right) \Rightarrow CM \bot A'M\)

\(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot CM\)

\( \Rightarrow d\left( {CC',A'M} \right) = CM = \frac{{a\sqrt 3 }}{2}\)

g) \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4},h = AA' = a\)

\( \Rightarrow {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^2}\sqrt 3 }}{4}.a = \frac{{{a^3}\sqrt 3 }}{4}\)

\({S_{\Delta MBC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{8},h = AA' = a\)

\( \Rightarrow {V_{A'.MBC}} = \frac{1}{3}{S_{\Delta MBC}}.AA' = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{8}.a = \frac{{{a^3}\sqrt 3 }}{{24}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 12 2019 lúc 10:55