Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số tự nhiên đều lớn hơn 0.
Dùng kí hiệu \(\forall ,\exists \) để viết các mệnh đề sau:
P: “Mọi số tự nhiên đều có bình phương lớn hơn hoặc bằng chính nó”
Q: “Có một số thực cộng với chính nó bằng 0”
P: "\(\forall n \in \mathbb N,\;{n^2} \ge n".\)
Q: "\(\exists \;a \in \mathbb R,\;a + a = 0".\)
Dùng kí hiệu \(\forall\) hoặc \(\exists\) để viết các mệnh đề sau :
a) Có một số nguyên bằng bình phương của nó
b) Mọi số (thực) cộng với 0 đều bằng chính nó
c) Có một số hữu tỉ nhỏ hơn nghịch đảo của nó
d) Mọi số tự nhiên đều lớn hơn 0
a) \(\exists a\in\mathbb{Z}:a=a^2\)
b) \(\forall x\in\mathbb{R}:x+0=x\)
c) \(\exists x\in\mathbb{Q}:x< \dfrac{1}{x}\)
d) \(\forall n\in\mathbb{N}:n>0\)
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số (thực) cộng với 0 đều bằng chính nó ;
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là số tự nhiên khác 0”?
A. 7 ⊂ ℕ *
B. 7 ∈ ℕ *
C. 7 < ℕ *
D. 7 ∉ ℕ *
Đáp án B
Vì 7 là một số tự nhiên khác 0 nên 7 ∈ ℕ *
Dùng kí hiệu “\(\forall \)” hoặc “\(\exists \)” để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó.
b) Mọi số thực cộng với 0 đều bằng chính nó.
a) \(\exists x \in \mathbb{Z},\;x \not{\vdots} \;x.\)
b) \(\forall x \in \mathbb{R},\;x + 0 = x.\)
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số hữu tỉ nhỏ hơn nghịch đảo của nó;
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “ 5 là số tự nhiên”?
A. 5 ∈ N
B. 5 ⊂ N
C. 5 ∈ Z
D. 5 ⊂ Z
Đáp án: A
5 là phần tử thuộc tập hợp. Tập hợp số tự nhiên kí hiệu là => A đúng.
Cho các mệnh đề sau:
P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”
Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”
R: “Có số thực x sao cho \({x^2} + 2x - 1 = 0\)”
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Sử dụng kí hiệu \(\forall ,\exists \) để viết lại các mệnh đề đã cho.
a) Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).
Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.
Mệnh đề R đúng vì \(x = - 1 + \sqrt 2 \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)
b) Có thể viết lại các mệnh đề trên như sau:
P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”
Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”
R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số nguyên bằng bình phương của nó ;