Cho phân thức A = x 4 + x 3 + x + 1 x 4 − x 3 + 2 x 2 − x + 1 .
a) Thu gọn A.
b) Chứng minh A luôn không âm với mọi giá trị của x.
cho phân thức A=\(\dfrac{4x+4}{x2-1}\)
a) tìm x để phân thức A có nghĩa
b)rút gọn phân thức A
c) tính giá trị của phân thức A tại x=5
d) Tìm x để giá trị của phân thức A bằng 3
a) \(\text{A}=\dfrac{4x+4}{x^2-1}.\)
Để phân thức A có nghĩa. \(\Leftrightarrow x\ne1;x\ne-1.\)
b) \(\text{A}=\dfrac{4x+4}{x^2-1}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}.\)
Bài 9: Cho biểu thức: [(4/x-4)-(4/x-4)].(x^2+8x+16/32)
a) Tìm điều kiện của x để phân thức xác định?
b) Tìm giá trị của x để phân thức có giá trị bằng 1/3
c) Tìm giá trị của x để phân thức có giá trị bằng 1
d) Tìm giá trị nguyên của x để phân thức có giá trị nguyên?
e) Tìm giá trị của x để phân thức luôn dương?
Sửa đề: \(\left\lbrack\frac{4}{x-4}-\frac{4}{x+4}\right\rbrack\cdot\frac{x^2+8x+16}{32}\)
Đặt \(A=\left\lbrack\frac{4}{x-4}-\frac{4}{x+4}\right\rbrack\cdot\frac{x^2+8x+16}{32}\)
a: ĐKXĐ: x∉{4;-4}
b: \(A=\left\lbrack\frac{4}{x-4}-\frac{4}{x+4}\right\rbrack\cdot\frac{x^2+8x+16}{32}\)
\(=\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\cdot\frac{\left(x+4\right)^2}{32}\)
\(=\frac{4x+16-4x+16}{x-4}\cdot\frac{x+4}{32}=\frac{32}{x-4}\cdot\frac{x+4}{32}=\frac{x+4}{x-4}\)
\(A=\frac13\)
=>\(\frac{x+4}{x-4}=\frac13\)
=>3(x+4)=x-4
=>3x+12=x-4
=>2x=-16
=>x=-8(nhận)
c: A=1
=>x+4=x-4
=>4=-4(loại)
=>x∈∅
d: Để A nguyên thì x+4⋮x-4
=>x-4+8⋮x-4
=>8⋮x-4
=>x-4∈{1;-1;2;-2;4;-4;8;-8}
=>x∈{5;3;6;2;8;0;12;-4}
Kết hợp ĐKXĐ, ta được: x∈{5;3;6;2;8;0;12}
e: Để A>0 thì \(\frac{x+4}{x-4}>0\)
=>x-4>0 hoặc x+4<0
=>x>4 hoặc x<-4
cho phân thức A= \(\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)
a/rút gọn phân thức A
b/tìm giá trị nhỏ nhất
Cho phân thức F(x)=(x4+x3-x2-2x-2):(x4+2x3-x2-4x-2)
a)Rút phân thức
b)xác định x để phân thức có giá trị nhỏ nhất
Cho phân thức: \(P=\dfrac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)
a, Rút gọn phân thức P
b, Với x > 0. Tìm giá trị của x để phân thức P có GTNN.
Xác định các số nguyên sao cho:
a. Đa thức: x^4+x^3+2x^2-7x-5 phân tích thành tích của 2 đa thức: x^2+2x+5 và x^2+bx+c
b. Đa thức: x^4-2x^3+2x^2-2x+a phân tích thành tích của 2 đa thức: x^2-2x+1 và x^2+bx+c
Cho đa thức A = 2 x 3 + x 2 − 13 x + 6 và hai phân thức: x 2 x 2 + 5 x − 3 , x + 2 x 2 + x − 6 với x ≠ − 3 ; x ≠ 1 2 và x ≠ 2 .
a) Chia đa thức A lần lượt cho các mẫu thức của hai phân thức đã cho.
b) Quy đồng mẫu thức của hai phân thức đã cho.
Cho phân thức ( x2 - 4x + 4 ) / ( x2 - 4 )
a, Tìm ĐKXĐ của phân thức
b, Rút gọn phân thức
c, Tính giá trị của phân thức tại |x| = 3
d, Tìm giá trị của x để giá trị của phân thức nhỏ hơn 2
a, ĐKXĐ \(x^2-4\ne0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}X\ne2\\X\ne-2\end{cases}}\)
=> \(X\ne\pm2\)
Vậy \(X\ne\pm2\)
b, Rút gọn
A= \(\frac{x^2-4x+4}{x^2-4}\) ĐKXĐ: \(X\ne\pm2\)
<=> A= \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
<=> A= \(\frac{x-2}{x+2}\)
Vậy A= \(\frac{x-2}{x+2}\) với \(X\ne\pm2\)
Hết r............
Thông cảm
a, \(ĐKXĐ:x^2-4\ne0\Rightarrow x\ne\pm2\)
b,Đặt \(A=\frac{x^2-4x+4}{x^2-4}\)
\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
c, \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\) (thỏa mãn ĐKXĐ)
Với x = 3 thì \(A=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = -3 thì \(A=\frac{-3-2}{-3+2}=5\)
d, \(A< 2\Rightarrow\frac{x-2}{x+2}< 2\Rightarrow x-2< 2x+4\Rightarrow-2-4< 2x-x\Rightarrow x>-6\)
Câu 1 Giá trị của biểu thức x^3-3x^2+3x-1 tại x=11 là
A.1001 B.1002 C.1000 D.999
Câu 2 Phân tích đa thức x^3-4x ta được?
Câu 3 Kết quả phép tính chia đa thức A=2x^2+3x-2 cho đa thức B=2x-1
Câu 4 Phân thức 3x-6/x^2-4 được rút gọn thành ?
Câu 1: C
Câu 2: =x(x-2)*(x+2)
Cho phân thức \(\frac{x-2}{x+2}\) với \(x\)≠\(-2\). Biến đổi phân thức đã cho thành một phân thức bằng nó và có tử thức là đa thức \(A=x^2-4\)
\(\dfrac{x-2}{x+2}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2^2}{\left(x+2\right)^2}\)
\(=\dfrac{x^2-4}{x^2+4x+4}\)
Vậy đã biến đổi phân thức thành một phân thức bằng nó và có tử bằng với đa thức: \(A=x^2-4\)