Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 9 2018 lúc 14:54

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2018 lúc 4:21

Chọn đáp án A.

Chú ý: Tứ diện đều chỉ là trường hợp đặc biệt của một số tứ diện hoặc một hình chóp tam giác. Chúng ta có các kết quả như sau:

1. Cho khối chóp tam giác đều có cạnh đáy bằng a và cạnh bên bằng b. Thể tích khối chóp tam giác đều bằng 

2. Cho khối tứ diện ABCD có  và các cạnh còn lại đều bằng a. Thể tích khối tứ diện ABCD là 

3. Cho khối tứ diện ABCD có AB = x, CD = y và các cạnh còn lại đều bằng a. Thể tích khối tứ diện ABCD là 

4. Cho khối tứ diện gần đều ABCD có AB = CD = a, AC = BD = b, AD = BC = c. Thể tích khối tứ diện ABCD là 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2019 lúc 12:02

Đáp án: A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 2 2019 lúc 2:32

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2018 lúc 5:41

Đáp án B

Thể tích khối cầu ngoại tiếp tứ diện ABCD’ chính là thể tích khối cầu ngoại tiếp hình hộp chữ nhật ABCD.A’B’C’D’. Khi đó, bán kính khối cầu ngoại tiếp là R = A C ' 2 . 

Ta có V = 4 3 πR 3 = 4 3 π . AC ' 3 8 = 9 2 πa 3 ⇒ AC ' 3 = 27 a 3 ⇒ AC ' = 3 a . 

Mặt khác A C ' 2 = A B 2 + A D 2 + A A ' 2 ⇒ A D 2 = ( 3 a 2 ) - a 2 - ( 2 a ) 2 = 4 a 2 ⇒ A D = 2 a . 

Vậy thể tích của hình hộp chữ nhật ABCD.A'B'C'D' là V = A A ' . A B . A D = a . 2 a . 2 a = 4 a 3 .

không tên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 10 2017 lúc 16:54

Đáp án D

Có A'.ABD là tứ diện đều cạnh a có 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 12 2018 lúc 8:56

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:57

Gọi \(AC \cap BD = \left\{ O \right\}\) mà A’.ABCD là hình chóp đều nên \(A'O \bot \left( {ABCD} \right)\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác A’AO vuông tại O có

\(A'O = \sqrt {A{{A'}^2} - A{O^2}}  = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}  = \frac{{a\sqrt 2 }}{2}\)

\({S_{ABCD}} = {a^2}\)

Vậy khối lăng trụ có thể tích \(V = \frac{1}{3}A'O.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{2}.{a^2} = \frac{{{a^3}\sqrt 2 }}{6}\)

Nếu hình lăng trụ \(ABCD.A'B'C'D'\) xoay lại thành hình lăng trụ AA’D’D.BB’C’C thì thể tích không thay đổi do đó thể tích hình chóp \(A'.BB'C'C\) bằng một phần 3 thể tích hình lăng trụ AA’D’D.BB’C’C vì chung đáy và chung chiều cao kẻ từ A’ xuống đáy BB’C’C.

Thể tích khối chóp là \({V_{A'.BB'C'C}} = \frac{1}{3}.\frac{{{a^3}\sqrt 2 }}{6} = \frac{{{a^3}\sqrt 2 }}{{18}}\)