Giải tam giác vuông ABC vuông tại A, biết AC = 8cm và C = 30°
Câu 4: a, Giải tam giác ABC vuông tại B. Biết góc A = 30°,AC= 10cm. b, Giải tam giác ABC vuông tại C. Biết góc B = 30°,AC =5cm
b: AB=10cm
\(BC=5\sqrt{3}\left(cm\right)\)
\(\widehat{C}=60^0\)
Cho tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau:
a) BC = 10cm,góc C= 30 độ. b) AB=8cm và góc B=30 độ ?
a: \(\widehat{B}=90^0-30^0=60^0\)
XétΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
nên AB=5cm
=>\(AC=5\sqrt{3}\left(cm\right)\)
b: \(\widehat{C}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
hay \(BC=16\sqrt{3}\left(cm\right)\)
=>\(AC=8\sqrt{3}\left(cm\right)\)
Cho ∆ABC vuông tại A, biết AC = 8cm, BC = 17cm. Giải tam giác vuông đó.
\(AB=\sqrt{BC^2-AC^2}=15\left(cm\right)\left(pytago\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{8}{17}\approx\sin28^0\\ \Rightarrow\widehat{B}\approx28^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx62^0\)
Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
75 cũng đoán bừa
Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
Ta có : \(sinC=\frac{AB}{BC}=\frac{1}{2}\) nên \(BC=2AB=6\)
Suy ra , \(AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\) và góc \(B=60^0\)
****
xét tam giác vuông ABC:
góc A+góc B+góc c=180 độ
90 độ+góc B+30 độ=180 độ
120 độ+góc B=180 độ
góc B=180-120
góc B=60 độ
tick nha
Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
Ta co tinh chat canh doi dien voi goc 30do thi =1/2 canh huyen.o bai nay thi ta giai nhu sau.goi BC=a=>AB=a/2.ap dung PYTAGO =>(a/2)^2+100=a^2=>a= 11,55
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm. Hãy giải tam giác vuông ABC
Xét tam giác ABC vuông tại A áp dụn Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)
\(\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=90^o-53^o\approx37^o\)
Cho tam giác ABC vuông tại A có I là trung điểm của AC. Vẽ ID vuông góc với
cạnh huyền BC, (De BC).
a)Chứng minh AB2 = BD? _ CD2
b) Biết AB = 6cm; AC = 8cm. Em hãy giải tam giác vuông ABC
Nối B vs I. Xét tam giác BID vuông tại D, có:
BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:
DC2 = IC2 - ID2 (2).Từ (1) và (2) =>
=> BD2 - DC2
= BI2 - ID2 - IC2 + ID2
= BI2 - IC2
= BI2 - AI2 (vì AM=CM)
= AB2=> AB2 = BD2 - DC2 (đpcm)
a: \(BD^2-CD^2\)
\(=BI^2-ID^2-CI^2+ID^2=BI^2-CI^2=BI^2-AI^2=BA^2\)
b: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
sin B=AC/BC=4/5
=>góc B=53 độ
=>góc C=37 độ
2.Tính các cạch và góc còn lại của tam giác vuông ABC vuông tại A biết rằng :
a)AC=8cm;góc C=30 b)AB=12cm,góc C=45
c)BC=10cm;góc B=35độ d) AB=10cm,AC=24cm