Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a 2 , SA = SB = SC . Góc giữa SA và mặt phẳng (ABC) bằng 60 0 . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABC theo a.
A. 2 a 3
B. a 3 2
C. 2 a 3 5
D. 2 a 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB=AC=a, SC ⊥ (ABC) và SC=a. Mặt phẳng qua C vuông góc với SB cắt SA SB , lần lượt tại E, F. Tính thể tích khối chóp S.CEF
A. V S . C E F = 2 a 3 36
B. V S . C E F = a 3 36
C. V S . C E F = a 3 18
D. V S . C E F = 2 a 3 12
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A , mặt phẳng (SBC) vuông góc với mặt phẳng (ABC) và SA=SB=AB=AC=a; SC=a 2 . Diện tích xung quanh mặt cầu ngoại tiếp hình chóp S.ABC bằng:
A. 2 πa 2
B. πa 2
C. 8 πa 2
D. 4 πa 2
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A AB = SA = SB =SC = 2. Tính góc giữa hai đường thẳng AB và SC.
Dựng hình vuông ABDC
\(\Rightarrow SA=SB=SC=SD=2\) ; \(CD=AB=2\)
\(CD||AB\Rightarrow\widehat{\left(AB;SC\right)}=\widehat{\left(CD;SC\right)}=\widehat{SCD}\)
Tam giác SCD có \(SC=SD=CD\Rightarrow\Delta SCD\) đều
\(\Rightarrow\widehat{SCD}=60^0\)
Cho hình chóp S . A B C có đáy ABC là tam giác cân tại A , mặt phẳng (SBC) vuông góc với mặt phẳng (ABC) và S A = S B = A B = A C = a ; S C = a 2 . Diện tích xung quanh mặt cầu ngoại tiếp hình chóp S.ABC bằng:
A. 2 π a 2
B. π a 2
C. 8 π a 2
D. 4 π a 2
Đáp án D
Gọi H là trung điểm của BC ta có: A H ⊥ B C Do A B C ⊥ S B C ⇒ A H ⊥ S B C
Đặt A H = x ⇒ H C = a 2 − x 2 = H B = S H ⇒ Δ S B C
vuông tại S (do đường trùng tuyến bằng cạnh đối diện). Suy ra B C = S B 2 + S C 2 = a 3 . Gọi O là tâm đường tròn ngoại tiếp Δ A B C ⇒ O ∈ A H ⇒ O A = O B = O C = OS .Ta có: R = R A B C = A C 2 sin B , trong đó sin B = A H A B = A S 2 − S H 2 A B = 1 2 Do đó R C = a ⇒ S x q = 4 π R 2 C = 4 π a 2 .
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B , AB=BC=a . Cạnh bên SA vuông góc với mặt phẳng đáy, SA =a căn 2
a) CM BC vuông SB
b) Xác định và tính góc giữa SC và (ABC)
a.
Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow BC\perp SB\)
b.
\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)
\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)
Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\)
\(\Rightarrow BM\perp\left(SAC\right)\Rightarrow\widehat{BSM}\) là góc giữa SB và (SAC)
\(AC=a\sqrt{2}\) ; \(AM=BM=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\)
\(SA=\sqrt{SC^2-AC^2}=a\Rightarrow SB=a\sqrt{2}\)
\(sin\widehat{BSM}=\dfrac{BM}{SB}=\dfrac{1}{2}\Rightarrow\widehat{BSM}=30^0\)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, AB = a, SA = 2a và SA vuông góc với mặt phẳng đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối tứ diện S.AHK.
A. V = 4 a 3 15
B. V = 8 a 3 45
C. V = 8 a 3 15
D. V = 4 a 3 5
Cho chóp S.ABC có SA vuông góc với (ABC), tam giác ABC là tam giác vuông cân tại A,AB=a , SA=5a Gọi D, E là hình chiếu của A trên SB, SC. Thể tích khối chóp A.BCED là
A. 85 a 3 1352
B. 22 a 3 289
C. 19 a 3 200
D. 3 a 3 25
Cho chóp S.ABC có SA vuông góc với (ABC), tam giác ABC là tam giác vuông cân tại A, AB = a, SA = 5a. Gọi D, E là hình chiếu của A trên SB, SC. Thể tích khối chóp A.BCED là
A . 85 a 3 1352
B . 22 a 3 289
C . 19 a 3 200
D . 3 a 3 25