Dựng hình vuông ABDC
\(\Rightarrow SA=SB=SC=SD=2\) ; \(CD=AB=2\)
\(CD||AB\Rightarrow\widehat{\left(AB;SC\right)}=\widehat{\left(CD;SC\right)}=\widehat{SCD}\)
Tam giác SCD có \(SC=SD=CD\Rightarrow\Delta SCD\) đều
\(\Rightarrow\widehat{SCD}=60^0\)
Dựng hình vuông ABDC
\(\Rightarrow SA=SB=SC=SD=2\) ; \(CD=AB=2\)
\(CD||AB\Rightarrow\widehat{\left(AB;SC\right)}=\widehat{\left(CD;SC\right)}=\widehat{SCD}\)
Tam giác SCD có \(SC=SD=CD\Rightarrow\Delta SCD\) đều
\(\Rightarrow\widehat{SCD}=60^0\)
Cho hình chóp S.ABC, đáy ABC là tam giác vuông tại B, BC = a, cạnh bên SA vuông góc với đáy và SA = a. Gọi MN là đoạn vuông góc chung của hai đường thẳng SC và AB, \(\left(M\in SC,N\in AB\right)\). Tỷ số \(\dfrac{AN}{AB}\) bằng bao nhiêu?
Mình cần gấp lắm , giải thích từ từ hộ mình
Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, Có AB = a, AC = 2a và cạnh bên SA vuông góc với đáy. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60 độ .
1) Tính góc giữa SC và mặt phẳng (ABC).
2) Tính theo a khoảng cách từ là trọng tâm G của tam giác SAB đến mặt phẳng (SBC).
Cho hình chóp S.ABC có SA vuông góc với đáy, SA=2a, SA vuông góc với đáy, gọi H, K lần lượt là hình chiếu vuông góc của A trên SB, SC; biết tam giác ABC đều cạnh a. Xác định góc giữa các mặt phẳng : (SBC) và (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy, SA = \(a\sqrt{2}\), góc giữa đường thẳng SC và mặt phẳng đáy bằng 45o. Gọi M là trung điểm của cạnh AB. Tính theo a khoảng cách h giữa hai đường thẳng DM và SB.
Help me!!!!
Gấp lắm ạ
1.Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB= \(\dfrac{a\sqrt{3}}{3}\), AD=a\(\sqrt{3}\), SA=a và vuông góc với mp đáy. Khi đó góc giữa SB và mp (SAD) bằng bao nhiêu?
2.Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. SA vuông góc với mp đáy. Số mặt của tứ diện là tam giác vuông là bao nhiêu?
3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, CA=a, CB=b, SA=h vuông góc với mặt đáy. Gọi I là trung điểm của AB.
a, CMR: BC vuông góc với (SAC)
b, Tính khoảng cách giữa SI và AC theo a,b,h
Cho hình chóp SABC có đáy ABC là tam giác vuôg tại B và có SA vuôg vs mp (ABC). a/ cm: BC vuôg (SAB) b/ Giả sử SA=a căn 3 và AB= a, tính góc giữa đường thẳng SB và mp(ABC) c/ Gọi AM là đường cao của tam giác SAB, N là điểm thuộc cạnh SC. cm: (AMN) vuôg (SBC)?
a,Tính góc giữa SC và ( ABC)
b, Tính góc giữa ( SBC ) Và ( ABC)
Biết:
1,Hình chóp SABC có đáy ABC là tam giác đều cạnh bằng a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy, SB hợp với đáy một góc 30 độ
2, Hình chóp SABC có đáy ABC là tam giác đều , mặt bên SAB nằm trong mặt phẳng vuông góc với mặt phẳng đáy và tam giác SAB vuông tại S. SA= \(a\sqrt{3}\), SB= a
cho hc S.ABC với đáy ABC vuông B , AB=a, SA vuông đáy và SA=a\(\sqrt{3}\) BC=2a
a) xđ và tính góc (SC,(ABC))
b) xđ và tính góc ((SBC),(ABC)
C) tính d(A,(SBC))
2 cho hc S.ABCD đáy là hình vuông cạnh a SA vuông đáy SA=3a
a) xđ và tính góc (SB, (ABC))
b) xđ và tính góc (SBC),(ABC))
c) d(A,(SBC))