Cho hàm số y = - 4 x 3 + 4 x . Tìm x để y ' ≥ 0 .
A. - 3 ; 3
B. - 1 3 ; 1 3
C. ( - ∞ ; 3 ] ∪ [ 3 ; + ∞ )
D. ( - ∞ ; - 1 3 ] ∪ [ 1 3 ; + ∞ )
cho hàm số y = f(x) = 5-2x
a) tìm điều kiện của x để hàm số f(x) xác định
b)tính f(-2) ; f(-1) ; f(0) ; f(1/2) ; f(4)
c)tìm x biết f(x) = -4 ; -3 ; 0 ; 5 .
a/ cho hàm số: y=(-3m - 2)x2. Tìm m để hàm số nghịch biến khi x < 0
b/ cho hàm số: y=(m2 - 2m + 3)x2. Xác định tính biến thiên của hàm số
c/ cho hàm số: y=(2m + 3)x2. Tìm m để hàm số đồng biến khi x>0
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Cho hàm số y = ( 3 + 2 ) x – 4 − 4 3 . Tìm x để y = 3 .
A. x = 2 + 3
B. 3
C. x = 3 + 2
D. x = 3 − 2
Ta có y = 3 ⇔ ( 3 + 2 ) x – 4 − 4 3 = 3 ⇔ ( 3 + 2 ) x = 7 + 4 3
( 3 + 2 ) x = ( 3 + 2 ) 2 ⇔ x = 3 + 2
Vậy x = 3 + 2
Đáp án cần chọn là: C
cho hàm số : y= (3m -4)x +3 (1)
a) Vẽ đồ thị hàm số (1) với m=1
b) tìm điều kiện của m để đồ thị hàm số song song với đường thẳng y= 3x +5
c) tìm m để khoảng cách từ 0 đến điểm (1) = 5/4
cho hàm số y=f(x)=(x+4)|x+2| tìm m để hàm số y=f(x) cắt đường thẳng y=m tại 3 điểm phân biệt
Cho hàm số: \(y=-\dfrac{x^3}{3}+\left(a-1\right)x^2+\left(a+3\right)x-4\). Tìm a để hàm số đồng biến trên khoảng (0;3)
\(y'=-x^2+2\left(a-1\right)x+a+3\)
Hàm đồng biến trên khoảng đã cho khi với mọi \(x\in\left(0;3\right)\) ta có:
\(-x^2+2\left(a-1\right)x+a+3\ge0\)
\(\Leftrightarrow\left(2x+1\right)a\ge x^2+2x-3\)
\(\Rightarrow a\ge\dfrac{x^2+2x-3}{2x+1}\)
Xét hàm \(f\left(x\right)=\dfrac{x^2+2x-3}{2x+1}\) với \(x\in\left(0;3\right)\)
\(f'\left(x\right)=\dfrac{2\left(x^2+x+4\right)}{\left(2x+1\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)< f\left(3\right)=\dfrac{12}{7}\Rightarrow a\ge\dfrac{12}{7}\)
Cho hai hàm số y = f(x) = x+1 và y = g(x) = x+ \(\sqrt{\frac{4}{25}}\). Tìm giá trị x của hàm số y = f(x) để f(x) = g(0)
\(\hept{\begin{cases}f\left(x\right)=x+1\\g\left(x\right)=x+\sqrt{\frac{4}{25}}=x+\frac{2}{5}\end{cases}}\)
\(g\left(0\right)=\frac{2}{5}\Rightarrow f\left(x\right)=\frac{2}{5}\Rightarrow x+1=\frac{2}{5}\Rightarrow x=-\frac{3}{5}\)
a) Cho hàm số y = f(x) = ax - 3. Tìm a biết f(2) = 5.
b) Cho hàm số y = f(x) = ax + b. Tìm a và b biết f(0) = 3 và f(1) = 4
a ) Ta có : f(2) = 5
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(2\right)\\\text{ax}-3=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\a.2-3=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\a=4\end{cases}}\)
Vậy a = 4
b ) Ta có : f(0) = 3
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(0\right)\\\text{ax}+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\a.0+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\b=3\end{cases}}\) ( 1 )
Ta có : f ( 1 ) = 4
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(1\right)\\\text{ax}+b=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\a.1+b=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\a+b=4\end{cases}}\) ( 2 )
Thay b = 3 ở ( 1 ) vào a+b=4 ở ( 2 ) ta được : a + 3 = 4
a = 1
Vậy a = 1 ; b = 3
Cho hàm số y = 1 3 x 3 - 2 m + 1 x 2 + m x - 4 . Tìm m để: y ' < 0 , ∀ x ∈ 1 ; 2 .
A. m > 0
B. m > 1
C. 0 < m < 1
D. m = 1
Cho hàm số y=f(x) = -1/4x - 2/3
+ Hãy tính: f (0) ; f(4)
+ Tìm x để f(x) =1/3