Cho a/b=c/d.CMR: a,\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5ad}{7b^2-5ad}\)
b,\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
NHanh lên di ma!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho a/b=c/d.CMR: a,\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5ad}{7b^2-5ad}\)
b,\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
Huhu!giup to di ms!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho a/b=c/d.CMR: a,\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5ad}{7b^2-5ad}\)
b,\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
mik ko con gi de noi,Mik keu goi moi su giup do tu cac ban!!!!!!!!!!!!!!!!!!!!!!!
b) Ta có:
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\) => \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
Mặt khác \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) => \(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
Vậy:.........
a) Ta có:
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)
Theo tc dãy tỉ số bằng nhau ta có:
\(\frac{7a^2}{7b^2}=\frac{5ac}{5bd}=\frac{7a^2+5ac}{7b^2+5bd}=\frac{7a^2-5ac}{7b^2-5bd}\)
=>\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5ad}{7b^2-5ad}\)
mình trả lời giúp câu b
VT:(a+b/c+d)^2=(kb+b/kd+d)^2=[b*(k+1)/d*(k+1)]^2=(b/d)^2=b^2/d^2
VP:a^2+b^2/c^2+d^2=(kb)^2+b^2/(kd)^2+d^2=k^2*b^2+b^2/k^2*d^2+d^2=b^2*(k^2+1)/d^2*(k^2+1)=b^2/d^2
suy ra: VT=VP hay (a+b)^2/(c+d)^2=a^2+b^2/c^2+d^2
Cho \(\frac{a}{b}=\frac{c}{d}\) CMR:a,\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
b,\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
c,\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5ad}{7b^2-5ad}\)
Help me!!!!!!!!!!!!!!!!!!!!!!!!!!!!Buổi tối đi học òi!!!!!!!!!!!!!!!!!!!
Cho a/b=c/d.CMR: a,\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5ad}{7b^2-5ad}\)
b,\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
mik ko còn gì để nói,Mik kêu gọi mọi sự giúp đỡ từ các bạn!!!!!!!!!!!!!!!!!!!!!!!
Chọn a/b=c/d=k
=>a=bk; c=dk
b: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
1) Cho \(\frac{a}{b}\)\(=\)\(\frac{c}{d}\)
CMR:
a) \(\left(\frac{a+b}{c+d}\right)^2\)\(=\)\(\frac{a^2+b^2}{c^2+d^2}\)
b) \(\frac{7a^2+5ac}{7a^2+5ac}=\frac{7b^2+5bd}{7b^2+5bd}\)
Sử Dụng Tính Chất Của Dãy Tỉ Số Bằng Nhau
2) Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
CMR:
\(4\left(a-b\right)\left(b-c\right)=\left(c-d\right)^2\)
3) Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{2015a-2016b}{2016c+2017d}=\frac{2015c-2016d}{2016a+2017b}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}.Chứngminh\frac{7.a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\)\(a=bk;c=dk\)
Khi đó \(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\frac{k^2(7b^2+5bd)}{k^2(7b^2-5bd)}=\frac{7b^2+5bd}{7b^2-5bd}(1)\)
Từ (1) suy ra: \(đpcm\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). CMR
\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)
hok trường chuyên mak dell bt bài ni ak:))
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Thay vào ta được:\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2k^2+5bk\cdot dk}{7b^2k^2-5bk\cdot dk}=\frac{bk^2\left(7b+5d\right)}{bk^2\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\left(1\right)\)
\(\frac{7b^2+5bd}{7b^2-5bd}=\frac{b\left(7b+5d\right)}{b\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)
Ta có : a/b = c/d => a/c = b/d
Đặt \(\frac{a}{c}=\frac{b}{d}=k\) => \(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
Khi đó, ta có: \(\frac{7.\left(ck\right)^2+5c^2k}{7\left(ck\right)^2-5c^2k}=\frac{7.c^2.k^2+5.c^2.k}{7.c^2.k^2-5.c^2.k}=\frac{\left(7k+5\right).c^2.k}{\left(7k-5\right).c^2.k}=\frac{7k+5}{7k-5}\)(1)
\(\frac{7.\left(dk\right)^2+5.d^2.k}{7\left(dk\right)^2-5.d^2.k}=\frac{7.d^2.k^2+5.d^2.k}{7.d^2.k^2-5.d^2.k}=\frac{\left(7k+5\right).d^2.k}{\left(7k-5\right).d^2.k}=\frac{7k+5}{7k-5}\) (2)
Từ (1) và (2) suy ra (Đpcm)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).CMR
\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)
bài ni dễ mà ko bt lm
thế mà cx hk đt toán
CMR: Nếu\(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)( Giả sử các tỉ số đều có nghĩa)
Theo đề bài thì ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{7a}{7b}=\frac{5c}{5d}=\frac{7a+5c}{7b+5d}=\frac{7a-5c}{7b-5d}\left(1\right)\)
Ta cần chứng minh:
\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)
\(\Leftrightarrow\frac{7a+5c}{7a-5c}=\frac{7b+5d}{7b-5d}\)
\(\Leftrightarrow\frac{7a+5c}{7b+5d}=\frac{7a-5c}{7b-5d}\left(2\right)\)
Từ (1) và (2) ta suy ra điều phải chứng minh