Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2018 lúc 2:16

Gọi 3 số TN lần lượt là a; a+1; a+2 Ta giả sử a chia 2 dư 1; a+1 chia 2 dư 0; a+2 chia 2 dư 1 Vậy a+a+2 chia 2 dư 0. Vậy chắc chắn 3 số TN bất kì sẽ có 2 số mà tổng của chúng chia hết cho 2

Dương Đức Khoa
Xem chi tiết
OoO Kún Chảnh OoO
12 tháng 2 2016 lúc 16:45

Gọi r1, r2, ... r52 là số dư khi chia mỗi số đó cho 100 
mỗi ri (i = 1, 2, ..., 52) nhận giá trị từ các số 0, 1, 2, ..., 99 (có 100 số) 
* nếu có 2 số ri bằng nhau thì như trên 2 số tương ứng có hiệu chia hết cho 100 
* nếu 52 số ri đôi một khác nhau 
ta thấy từ 1 đến 99 có 49 cặp số có tổng là 100 đó là (1, 99) ; (2, 98) .. (49,51) 
theo nguyên lí Dirichlet trong 50 số chọn ra có ít nhất 2 số cùng 1 cặp 
và như vậy cùng với 2 số 0 và 50 ta chọn 52 số ri khác nhau => có ít nhất 2 số ri, rj (i # j) thuộc cùng 1 cặp, giả sử là r1 và r2 có r1 + r2 = 100 
a = 100m + r1 ; b = 100n + r2 
=> a+b = 100(m+n) + r1 + r2 = 100(m+n) + 100 chia hết cho 100

OoO Kún Chảnh OoO
12 tháng 2 2016 lúc 16:45

Nếu có đúng một số chia hết cho 100, 51 số còn lại không chia hết cho 100
Xét 50 cặp số dư : (1;99);(2;98);(3;97);...;(50;50)
Theo nguyên lí Dirichlet, tồn tại hai số mà số dư của chúng khi chia cho 50 là một trong 50 cặp số trên.
Giả sử số dư của hai số đó rơi vào cặp (a;b) (với a+b=100)
- Nếu cả hai số cùng chia 100 dư a (hoặc dư b) thì hiệu của chúng chia hết cho 100
- Nếu hai số, một chia 100 dư a, một số chia 100 dư b thì tổng của chúng chia hết cho 100
Bài toán được chứng minh
Nếu cả 52 số đều không chia hết cho 100. Tương tự như trên
Ta có đpcm

Nguyễn Đình Khang
30 tháng 6 2016 lúc 16:14

1*99+2*98+3*97+...+49*51+50*50

wedonttalkanymore
Xem chi tiết
Hà Mai Chi
Xem chi tiết
Đặng Hoàng Mỹ Anh
Xem chi tiết
Trần Thị Thu Thảo
Xem chi tiết
Huyền Nhi
6 tháng 1 2019 lúc 23:29

Dùng nguyên lí Dirichle bạn ạ

Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3 

Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4

=> hiệu 2 số này chia hết cho 4

Nguyễn Lên Ngọc Khôi
Xem chi tiết
Ăn CHơi Éo sỢ mƯa rƠi
15 tháng 1 2016 lúc 9:05

Đem 12 stn cha cho 11 thì nhận đc 12 số dư  .Mà 1 stn khi chia cho 11 se nhận đc trog  11 khả năng dư [ 0 đến 10 ]
ta có :
12/11=1 (dư 1)
Theo nguyên lí dircle sẽ tồn tại ít nhất 1+1=2 (số dư = nhau )
Nghĩa là sẽ có  2 stn khi chia cho 11 có cùng số dư

=> Hiệu 2 số đó chia hết cho 11

Chả bjt có đúng k .Nhưng mik nghĩ là 98%

TRần hương trang
Xem chi tiết
Minh Triều
27 tháng 5 2015 lúc 14:25

câu 1: Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm).
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.

câu 2: Mỗi đường thẳng cắt 2005 đường thẳng còn lại tạo nên 2005 giao điểm. Mà có 2006 đường
thẳng ⇒ có : 2005x 2006 giao điểm. Nhưng mỗi giao điểm được tính 2 lần ⇒ số giao điểm thực tế là:
(2005x 2006):2 = 1003x 2005 = 2011015 giao điểm.

nguyen anh
2 tháng 5 2017 lúc 10:05

bài này bạn lấy ở đâu mà khó thế

bé mèo meo meo
16 tháng 6 2018 lúc 14:18

tổng mà có phải hiệu đâu

Lê Ngọc Khánh Linh
Xem chi tiết