Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 12 2019 lúc 18:30

Đáp án B

Phương pháp:

Phương pháp tìm GTLN, GTNN của hàm số y = f(x) trên [a;b]

+) Bước 1: Tính y’, giải phương trình y' = 0 ⇒ xi ∈ [a;b]

+) Bước 2: Tính các giá trị f(a); f(b); f(xi)

+) Bước 3: 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 3 2019 lúc 10:26

Đáp án B

Đinh Văn Nam
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 7 2019 lúc 15:10

y ' = - 2 x - 1 2 < 0 trên đoạn [3; 5]. Vậy hàm số nghịch biến trên đoạn [3; 5].

Khi đó trên đoạn [-3,5]: hàm số đạt giá trị lớn nhất tại x = 3 và giá trị lớn nhất bằng 2, hàm số đạt giá trị nhỏ nhất tại x = 5 và giá trị nhỏ nhất = 1.5.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 8 2017 lúc 18:02

TXĐ: D = (-∞; 5/4]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 với ∀ x ∈ (-∞; 5/4)

⇒ Hàm số nghịch biến trên (-∞; 5/4)

⇒ Hàm số nghịch biến trên [-1; 1]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 1 2019 lúc 8:48

5   -   2 cos 2 x . sin 2 x   =   5   -   sin 2 2 x 2

Giải sách bài tập Toán 11 | Giải sbt Toán 11

S u y   r a   g i á   t r ị   l ớ n   n h ấ t   c ủ a   y   =   5   t ạ i   x   =   k π / 2 ,   g i á   t r ị   n h ỏ   n h ấ t   l à

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 

Lê Thanh Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2023 lúc 23:31

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2017 lúc 2:33

Vậy giá trị nhỏ nhất và giá trị lớn nhất của hàm số đã cho là - 8 và – 2.

Đáp án A

Hà Quỳnh Chi
Xem chi tiết