Tính tổng sau S = 2 10.12 + 2 12.14 + ... + 2 998.1000
2/10.12+2/12.14-2/12.14+....+2/48.50
tra loi cho minh nhe minh tich cho
Tính giá trị của biểu thức :
S = 1 / 10.12 + 1 / 12.14 + ... + 1 / 998.1000
S = \(\dfrac{1}{10.12}\) + \(\dfrac{1}{12.14}\) + .....+ \(\dfrac{1}{998.1000}\)
S = \(\dfrac{1}{2}\).( \(\dfrac{2}{10.12}\) + \(\dfrac{2}{12.14}\)+.....+ \(\dfrac{2}{998.1000}\))
S = \(\dfrac{1}{2}\).( \(\dfrac{1}{10}\)- \(\dfrac{1}{12}\)+ \(\dfrac{1}{12}\) - \(\dfrac{1}{14}\)+...+\(\dfrac{1}{998}\)- \(\dfrac{1}{1000}\))
S = \(\dfrac{1}{2}\). ( \(\dfrac{1}{10}\) - \(\dfrac{1}{1000}\))
S = \(\dfrac{1}{2}\).\(\dfrac{99}{1000}\)
S = \(\dfrac{99}{2000}\)
Tính:
a) A = 3/10.12 + 3/12.14 +...+ 3/998.1000
b) B = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/22.25
a) A = 3/10.12 + 3/12.14 + ... + 3/998.1000
2/3.A = 2/10.12 + 2/12.14 + ... + 2/998.1000
2/3.A = 1/10 - 1/12 + 1/12 - 1/14 + ... + 1/998 - 1/1000
2/3.A = 1/10 - 1/1000
2/3.A = 99/1000
A = 99/1000 : 2/3
A = 99/1000 . 3/2
A = 297/2000
b) B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/22.25
3/2.B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/22.25
3/2.B = 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/22 - 1/25
3/2.B = 1 - 1/25
3/2.B = 24/25
B = 24/25 : 3/2
B = 24/25 . 2/3
B = 16/25
Ủng hộ mk nha ^_-
a) Ta có: \(A=\frac{3}{10.12}+\frac{3}{12.14}+....+\frac{3}{998.1000}.\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10.12}+\frac{1}{12.14}+...+\frac{1}{998.1000}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{998}-\frac{1}{1000}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10}-\frac{1}{1000}=\frac{99}{1000}\)
\(\Rightarrow A=\frac{99}{1000}:\frac{2}{3}=\frac{297}{2000}\)
Ta có: \(B=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{22.25}\)
\(\Rightarrow\frac{3}{2}B=\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{22.25}\)
\(\Rightarrow\frac{3}{2}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{22}-\frac{1}{25}\)
\(\Rightarrow\frac{3}{2}B=1-\frac{1}{25}=\frac{24}{25}\)
\(\Rightarrow B=\frac{24}{25}:\frac{3}{2}=\frac{16}{25}\)
Tính hợp lí (nếu có thể):
\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{48.50}\)
Đặt \(A=\frac{2}{10\cdot12}+\frac{2}{12\cdot14}+\frac{2}{14\cdot16}+...+\frac{2}{48\cdot50}\)
\(A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
\(A=\frac{1}{10}-\frac{1}{50}=\frac{5}{50}-\frac{1}{50}=\frac{4}{50}=\frac{2}{25}\)
Vậy \(A=\frac{2}{25}\)
= \(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
= \(\frac{1}{10}-\frac{1}{50}\)= \(\frac{2}{25}\)
2/10.12+2/12.14+2/14.16+...+2/48.50
=1/10-1/12+1/12-1/14+1/14-1/16+...+1/48-1/50
=( 1/10-1/50 )+( 1/12-1/12 )+( 1/14-1/14 )+...+( 1/48-1/48 )
=( 5/50-1/50 )+0+0+...+0
=4/50
=2/25
CHÚC BẠN THÂN YÊU HỌC TỐT ^:^
Chứng minh: S < \(\frac{1}{10}\).Biết S = \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+.....+\frac{2}{98.100}\)
S=\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+.....+\frac{2}{98.100}\)
S=\(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+........+\frac{1}{98}-\frac{1}{100}\)
S=\(\frac{1}{10}-\frac{1}{100}\)
S=\(\frac{9}{100}\)<\(\frac{1}{10}\)
Giíp mình giải bài toán này với nhé!
Tính tổng sau : 10.12+11.13+12.14+....+201.202
Nếu có đáp án trả lời ngay cho mình nhé . Thanks các bạn nhiều
Bài 2: Tính:
\(\frac{1}{10.12}+\frac{1}{12.14}+\frac{1}{14.16}+...+\frac{1}{48.50}\)
bn lấy 1/2 nhân ra ngoài ròi tính như bình thường nha!
Đặt tổng trên là A ta có
\(2A=\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{48.52}\)
\(2A=\frac{12-10}{10.12}+\frac{14-12}{12.14}+\frac{16-14}{14.16}+...+\frac{50-48}{48.50}\)
\(2A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{48}-\frac{1}{50}=\frac{1}{10}-\frac{1}{50}=\frac{2}{25}\)
\(\Rightarrow A=\frac{2A}{2}=\frac{1}{25}\)
\(\frac{1}{10.12}+\frac{1}{12.14}+\frac{1}{14.16}+...+\frac{1}{48.50}\)
=\(\frac{1}{5.2.2.6}+\frac{1}{6.2.2.7}+\frac{1}{7.2.2.8}+...+\frac{1}{24.2.2.25}\)
=\(\frac{1}{2}.\left(\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{24.25}\right)\)
=\(\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\right)\)
=\(\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{25}\right)\)
=\(\frac{1}{2}.\frac{4}{25}\)
=\(\frac{2}{25}\)
mình không biết đúng hông có gì sai cho mình xin lỗi
Chứng minh S=\(\dfrac{2}{10.12}\) +\(\dfrac{2}{12.14}\) +\(\dfrac{2}{14.16}\) +...+\(\dfrac{2}{98.100}\) <\(\dfrac{1}{10}\)
\(S=\dfrac{2}{10\cdot12}+\dfrac{2}{12\cdot14}+...+\dfrac{2}{98\cdot100}\)
\(S=\dfrac{2}{10}-\dfrac{2}{12}+\dfrac{2}{12}-\dfrac{2}{14}+...+\dfrac{2}{98}-\dfrac{2}{100}\)
\(S=\dfrac{2}{10}-\dfrac{2}{100}=\dfrac{9}{50}=0,18\)
Vậy \(S>\dfrac{1}{10}\)
\(S=\dfrac{2}{10\cdot12}+\dfrac{2}{12\cdot14}+\dfrac{2}{14\cdot16}+...+\dfrac{2}{98\cdot100}\)
\(S=\dfrac{2}{10}-\dfrac{2}{12}+\dfrac{2}{12}-\dfrac{2}{14}+...+\dfrac{2}{98}-\dfrac{2}{100}\)
\(S=\dfrac{2}{10}-\dfrac{2}{100}\)
\(S=\dfrac{20}{100}-\dfrac{2}{100}\)
\(S=\dfrac{18}{100}=\dfrac{9}{50}=0,18\)
\(\dfrac{1}{10}=0,1\), mà \(0,1< 0,18\)
\(\Rightarrow S>\dfrac{1}{10}\left(đpcm\right)\)
S=\(\dfrac{2}{10.12}\)+\(\dfrac{2}{12.14}\)+...+\(\dfrac{1}{98\cdot100}\)
S=\(\dfrac{1}{10}\)-\(\dfrac{1}{12}\)+\(\dfrac{1}{12}\)-\(\dfrac{1}{14}\)+...+\(\dfrac{1}{98}\)-\(\dfrac{1}{100}\)
S=\(\dfrac{1}{10}\)-\(\dfrac{1}{100}\)
S=\(\dfrac{9}{100}\)
Ta có \(\dfrac{1}{10}\)=\(\dfrac{10}{100}\)
mà 10>9
Suy ra \(\dfrac{9}{100}\)<\(\dfrac{10}{100}\)
hay \(\dfrac{9}{100}\)<\(\dfrac{1}{10}\) <=>S<\(\dfrac{1}{10}\) (đpcm)