Chứng minh rằng:
Với x>1; y>0 thì \(\frac{1}{\left(x-1\right)^3}+\left(\frac{x-1}{y}\right)^3+\frac{1}{y^3}\ge3\left(\frac{3-2x}{x-1}+\frac{x}{y}\right)\)
Chứng minh rằng:Với mọi STN n thuộc N ta có:
n x ( n + 1 ) x ( 2n + 4) chia hết cho 12
Chứng minh rằng:với mọi số tự nhiên n,ta có n(n+1)(2n+1) chia hết cho 6
Chứng minh rằng:Với mọi số tự nhiên n thì \(\frac{2n+1}{6n+1}\)là phân số tối giản.
chứng minh rằng:với mọi số tự nhiên n,các số sau là các số nguyên tố cùng nhau.
a)n+1;n+2
b)3n+10;3n+9
a, Gọi ƯCLN(n+1;n+2)=d
Suy ra n+1⋮d;n+2⋮d
Suy ra n+2-n-1⋮d
Suy ra 1⋮d hay d=1
Vậy ƯCLN(n+1;n+2)=1 (đpcm)
b, Gọi ƯCLN(3n+10;3n+9)=d
Suy ra 3n+10⋮d;3n+9⋮d
Suy ra 3n+10-3n-9⋮d
Suy ra 1⋮d hay d=1
Vậy ƯCLN(3n+10;3n+9)=1 (đpcm)
chứng minh rằng:Với mọi số tự nhiên a và b , các đẳng thức sau luôn luôn sai:
8a + 6b + 1 = 1872
=> 8a + 6b = 1871
Mà 8a là số chẵn và 6b là số chẵn cộng lại ra số chẵn
Mà 1871 là số lẻ nên đẳng thức này luôn luôn sai
Chứng minh rằng:Với mọi n thì phân số \(\dfrac{7n+4}{5n+3}\) là phân số tối giản
A = \(\dfrac{7n+4}{5n+3}\) ( n # -3/5)
Gọi ước chung lớn nhất của 7n + 4 và 5n + 3 là d
Ta có : \(\left\{{}\begin{matrix}7n+4⋮d\\5n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}5.\left(7n+4\right)⋮d\\7.\left(5n+3\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}35n+20⋮d\\35n+21⋮d\end{matrix}\right.\)
Trừ vế với vế ta có: 35n + 21 - ( 35n + 20) ⋮ d
⇒ 35n + 21 - 35 n - 20 ⋮ d
1 ⋮ d
⇒ d = 1
Vậy ước chung lớn nhất của 7n + 4 và 5n + 3 là 1
Hay phân số: \(\dfrac{7n+4}{5n+3}\) là phân số tối giản ( đpcm)
chứng minh rằng:với mọi n thuộc N thì n2+2017 không là số chính phương
Chứng minh rằng:
Với a, b, c, d, e, thuộc N* và a/b < c/d thì a/b < (c+e)/ (d+e).
chứng minh rằng:với mọi số tự nhiên n thì :
a)(n+3)(n+6)chi hết cho 2
b)n(n+5)chia hết cho 2
Chứng minh rằng:Với mọi a thuộc Z thì các biểu thức sau là số chẵn
a,P=(a+3)(a-5)+(a+3)(a+1)
b,Q=(a-2)9a+3)-(a+2)(a-3)
a, P= ( a+3 ) ( a-5+a+1) = (a+3) (2a-4)=2 (a+3)(a-2) chia hết cho 2
b, Q= 9a2-15a-6-a2+a+6= 8a2-14a=2(4a2-7a) chia hết cho 2