Hãy xác định dấu của các tích (không dùng bảng số và máy tính)
sin 110 ο cos 130 ο cos 30 ο c o t 320 ο
Hãy xác định dấu của các tích (không dùng bảng số và máy tính)
sin ( - 50 ο ) tan 170 ο cos ( - 91 ο ) sin 530 ο
sin ( - 50 ο ) < 0 ; tan 170 ο < 0 ;
cos ( - 90 ο ) < 0 ; sin 530 ο > 0 ,
do đó tích của chúng âm
Hãy xác định dấu của các tích (không dùng bảng số và máy tính)
a) \(\sin110^0\cos130^0\tan30^0\cot320^0\)
b) \(\sin\left(-50^0\right)\tan170^0\cos\left(-91^0\right)\sin530^0\)
a) \(sin110^ocos130^otan30^ocot320^o\)
Ta có \(sin110^o>0;cos130^o< 0;tan30^o>0;cot320^o< 0\) nên
\(sin110^ocos130^otan30^ocot320^o>0\).
b) \(sin\left(-50^o\right)tan170^ocos\left(-91^o\right)sin530^o\)
\(=-sin50^otan170^o.cos91^osin170^o\)
Do \(sin50^o>0;tan170^o< 0;cos91^o< 0,sin170^o>0\)
nên \(=-sin50^otan170^o.cos91^osin170^o< 0\)
hay \(sin\left(-50^o\right)tan170^ocos\left(-91^o\right)sin530^o< 0\).
a) Ta có :
\(\sin110^0>0;\cos130^0< 0;\tan30^0>0;cot320^0< 0\)
do đó tích của chúng dương.
b) \(\sin\left(-50^0\right)< 0;tan170^0< 0;\cos\left(-91^0\right)< 0;\sin530^0>0\)
do đó tích của chúng âm.
Không dùng bảng số và máy tính, hãy xác định dấu của sinα và cosα với
α = 210 o
Không dùng bảng số và máy tính, hãy xác định dấu của sinα và cosα với
α = 1280 o
sin 1280 ο = sin ( 3 . 360 ο + 120 ο ) = sin 200 ο < 0
cos 1280 ο = cos 200 ο < 0
Không dùng bảng số và máy tính, hãy xác định dấu của sinα và cosα với
α = 334 o
Không dùng bảng số và máy tính, hãy xác định dấu của sinα và cosα với
α = - 1876 o
sin ( - 1876 ο ) = sin ( - 1800 ο - 76 ο ) = sin ( - 76 ο ) = - sin 76 ο < 0
cos ( - 1876 ο ) = cos ( - 76 ) ο = cos 76 ο > 0
Không dùng bảng số và máy tính, hãy xác định dấu của sinα và cosα với
α = - 235 o
sin ( - 235 ο ) = sin ( - 180 ο - 55 ο ) = - sin ( - 55 ο ) = sin 55 ο > 0 , cos ( - 235 ο ) < 0
Không dùng bảng số và máy tính, hãy xác định dấu của sinα và cosα với
α = 135 o
Không dùng máy tính cầm tay, hãy tính giá trị của các biểu thức sau:
\(A = {(\sin {20^o} + \sin {70^o})^2} + {(\cos {20^o} + \cos {110^o})^2}\)
\(B = \tan {20^o} + \cot {20^o} + \tan {110^o} + \cot {110^o}.\)
Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} = - \cos {70^o} = - \sin {20^o}\)
\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)
Ta có: \(\tan {110^o} = - \tan {70^o} = - \cot {20^o};\;\cot {110^o} = - \cot {70^o} = - \tan {20^o}.\)
\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)