Tìm sô´ nguyên x, sao cho:
a,(x^2+5)(x^2-25)=0. ; (x^2-5)(x^2-25)<0
tìm các số nguyên x,y sao cho
a,2x+xy-3y=18
b,tìm các số nguyên x biết tích (x^2-5).(x^2-25) là sô nguyên âm
Ta có : 2x + xy - 3y = 18
=> x(y + 2) - 3y = 18
=> x(y + 2) - 3y - 6 = 18 - 6
=> x(y + 2) - 3(x + 2) = 12
=> (x - 3)(y + 2) = 12
Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}x-3\inℤ\\y+2\inℤ\end{cases}}\)
Lại có : 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6)
Lập bảng xét 12 trường hợp
x - 3 | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
y + 2 | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
x | 4 | 15 | 2 | -9 | 6 | 7 | 0 | -1 | 5 | 9 | 1 | -3 |
y | 10 | -1 | -14 | -3 | 2 | 1 | -6 | -5 | 4 | 0 | -8 | -4 |
Vậy các cặp số (x;y) nguyên thỏa mãn là : (4 ; 10) ; (15 ; - 1) ; (2 ; -14) ; (-9 ; -3) ; (6 ; 2) ; (7 ; 1) ; (0 ; -6) ; (-1 ' 5) ; (5 ; 4) ; (9 ; 0) ;
(1 ; -8) ; (-3 ; -4)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
TH1 : \(\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\Rightarrow5< x^2< 25\Rightarrow x^2\in\left\{9;16\right\}}\)(vì x là số nguyên)
=> \(x\in\left\{\pm3;\pm4\right\}\)
TH2 : \(\hept{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2>25\end{cases}}\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{\pm3;\pm4\right\}\)
2x + xy - 3y = 18
<=> 2x + xy - 6 - 3y = 12
<=> ( 2x + xy ) - ( 6 + 3y ) = 12
<=> x( 2 + y ) - 3( 2 + y ) = 12
<=> ( x - 3 )( 2 + y ) = 12
Lập bảng :
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 7 | -1 | 9 | -3 | 15 | -9 |
2+y | 12 | -12 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 10 | -14 | 4 | -8 | 2 | -6 | 1 | -5 | 0 | -4 | -1 | -3 |
Vậy ta có 12 cặp ( x ; y ) thỏa mãn
( 4 ; 10 ) , ( 2 ; -14 ) , ( 5 ; 4 ) , ( 1 ; -8 ) , ( 6 ; 2 ) , ( 0 ; -6 ) , ( 7 ; 1 ) , ( -1 ; -5 ) , ( 9 ; 0 ) , ( -3 ; -4 ) , ( 15 ; -1 ) , ( -9 ; -3 )
Tìm x và y sao cho:a/Giá trị tuyệt đối của x+25 +Giá trị tuyệt đối của - y -3 =0
b/Giá trị tuyệt đối của x+15 +Giá trị tuyệt đối của y-32 lớn hơn hoặc bằng 0
2. Tìm tập hợp các số nguyên x sao cho:
a) – 2 < x < 1; b) – 5 ≤ x ≤ 3; c) – 4 < x < - 3.
3. Sắp xếp các số nguyên sau theo thứ tự tăng dần: 12; - 7; 21; 0; 6; - 5; - 10.
4. Lấy ví dụ để minh họa các khẳng định sau:
a) Trong hai số nguyên dương, số có giá trị tuyệt đối lơn hơn thì lớn hơn.
b) Trong hai số nguyên âm, số có giá trị tuyệt đối nhỏ hơn thì lớn hơn.
5. Có thể kết luận gì về số nguyên a nếu biết:
a) a = |a| b) a < |a|
6. a) Với mọi số nguyên a, ta có: |a| ≥ 0. Khi nào xảy ra đẳng thức?
b) Với mọi số nguyên a, ta có: |a| ≥ a. Khi nào xảy ra đẳng thức?
7. Cho tập hợp A = { x | −6 x 5 }
a) Viết tập hợp A bằng cách liệt kê các phần tử
b) Điền các ký hiệu thích hợp vào các chỗ trống:
-8…….A; -5……A; {-2;-1}……A; A……
8. a) Có phải bao giờ ta cũng có a > -a không?
b) Khi nào thì a < - a?
9. Tìm tập hợp các số nguyên x biết:
a) |x| = 7; b) |x| = -2; c) |x| < 3.
10. So sánh hai số nguyên a và b biết rằng |a| < |b| và
a) a và b là hai số nguyên dương.
b) a và b là hai số nguyên âm.
11. Cho số nguyên a. Điền kí hiệu thích hợp vào chỗ trống (…):
a) Nếu |a| = a thì a …….0; b) Nếu |a| = -a thì a ……0; c) Nếu |a| > a thì a……0.
tìm sô nguyên x biết
|x+2|=6
Ta có: \(\left|x+2\right|=6\)
\(\Rightarrow\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}}\)
Vậy..
hok tốt!!
\(|x+2|=6\)
\(\Rightarrow\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
Vậy \(x\in\left\{4;-8\right\}\)
ta có : /x+2/=6
=>x+2=6 hoặc x+2=-6
với x+2=6=>x=6-2
=>x=4
với x+2=-6=>x=-6-2
=>x=-8
vậy x=4 hoặc x=-8
1. Tìm các số tự nhiên x và y sao cho:
a) x/3 - 4/y = 1/5
b) 4/x + y/3 = 5/6 .
2Tìm các số nguyên x và y sao cho:
a) 5/x - y/3 = 1/6
b) x/6 - 2/y = 1/30
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
Tìm các số nguyên x , sao cho :
a) (x^2+5)×(x^2-25)=0
b) ( x^2-5) ( x^2-25)<0
c) (x-2)×( x+1)=0
d) ( x^2+7)× ( x^2-49)<0
e) ( x^2-7) × ( x^2-49) <0
đăng kí hộ
https://www.youtube.com/channel/UCT23clmdY5azigRNMRDxGfw
a) \(\left(x^2+5\right).\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+5=0\\x^2-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-5\left(vl\right)\\x^2=25\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\pm5\end{cases}}}\)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Rightarrow\left(x^2-5\right)\)và \(\left(x^2-25\right)\)trái dấu
Vì \(\left(x^2-5\right)>\left(x^2-25\right)\)
\(\Rightarrow\hept{\begin{cases}x^2-5>0\\x^2-25< 25\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 50\end{cases}}}\)
\(\Rightarrow5< x^2< 50\)
\(\Rightarrow x^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7\right\}\)
c) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
các câu còn lại lm tương tự nhé!! hok tốt!!
Tính tổng các số nguyên x. Sao cho:
a, -10 < x < 10
b, -5 ≤ x < 5
c, -4 < x ≤ 6
Tìm các số nguyên x bằng 2 cách, sao cho
(x2+5).(x2-25)=0
(x2+5).(x2-25)>0
Tìm các số nguyên x, sao cho:
a) (x^2 + 5)(x^2-25)=0
b) (x^2-5)(x^2-25)<0
làm chi tiết thì tick
a) suy ra x^2 +5 =0 hoặc x^2 - 25 =0
*) x^2+5=0
x^2 =0-5
x^2 = -5 (loại )
*) x^2 - 25 =0
x^2 = 0+25
x^2 =25
x^2 = 5^2
suy ra x=5
vậy x=5