Tim x Biet :
x + 83x + 16x = 48500
tim x biet : x^3-16x=0
Trả lời
x^3 - 16x = 0
x(x^2 - 16) = 0
Nghiệm thứ nhất: x=0
Tiếp tục:
x^2 - 16 = 0
x^2 - 4^2 = 0
(x-4)*(x+4) = 0
Nếu x-4=0 ta có nghiệm thứ hai x=4
Nếu x+4=0 ta có nghiệm thứ ba x= -4
Vậy phương trình có hệ nghiệm là:
x=0
x=4
x= -4
~ Cậu hok lớp nào? Mik hok lớp 6a1~
x3 - 16x = 0
=> x(x2 - 16) = 0
<=> x = 0 ; 4 ; -4
tim x biet
16x^3 - 12x^2 + 3x - 7 = 0
tim x, y biet :
a, \(x^2-2x+2+4y^2+4y\)
b, \(16x^2+5+8x-4y+y^2\)
a) x2−2x−4y2−4y=(x2−4y2)−(2x+4y)=(x−2y).(x+2y)−2.(x+2y)
=(x+2y).(x−2y−2)
b) x4+2x3−4x−4=(x4−4)+(2x3−4x)=(x2+2).(x2−2)+2x.(x2−2)
=(x2−2).(x2+2+2x)
(4x+1)(1-4x+16x^2) - 16x(4x^2-5) = 17 tim x
\(\left(4x+1\right)\left(1-4x+16x^2\right)-16x\left(4x^2-5\right)=17\)
\(\Leftrightarrow4x-16x^2+64x^2+1-4x+16x^2-64x^2+80x-17=0\)
\(\Leftrightarrow\left(-16x^2+16x^2\right)+\left(64x^2-64x^2\right)+\left(4x-4x\right)+80x+1-17=0\)
\(\Leftrightarrow80x=16\)
\(\Leftrightarrow x=\dfrac{1}{5}\)
tim x?
x^3-16x=0
x3 -16.x = 0
<=>x . ( x2 -16 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
Vậy phương trình có nghiệm { 0; 4 ; -4 }
tim X biet aaaa: X = a
tim X biet X x a = a0a0a0
a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)
b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)
16x^2-40xy/8x^2-24xy biet x/y=10/3
A=\(\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x(2x-5y)}{ 8x(x-3y)} =\frac{2x-5y}{x-3y} \)
\(\frac{x}{y}=\frac{10}{3}<=>10y=3x <=>y=\frac{3}{10}x \)
=>A=(\(2x-\frac{3}{2}x):(x-\frac{9}{10}x) \)
=\(\frac{1}{2}x:\frac{1}{10}x=\frac{1}{2}x.\frac{10}{x}=5 \)
Tim x
\(\sqrt{4x^2-16x+64}+2x=12\)
ĐKXĐ: \(x\ge4\)
\(\sqrt{4x^2-16x+64}+2x=12\)
\(\Leftrightarrow\sqrt{\left(2x-8\right)^2}+2x=12\)
\(\Leftrightarrow\left|2x-8\right|+2x=12\)
Vì \(x\ge4\) \(\Rightarrow2x-8+2x=12\)
\(\Leftrightarrow4x=20\)
\(\Leftrightarrow x=5\left(TM\right)\)
Vậy x = 5
tim x biet x+34 la boi cua x+1 tim x biet 2x+1 la uoc cua x+82