Cho tam giác MNP, từ điểm P kẻ đường thẳng song song với MN, trên đường thẳng đó lấy điểm K sao cho PK = MN (K và M ở cùng phía so với NP). Chứng minh ∆ M N P = ∆ P K M .
TH_ Cho tam giác MNP , từ điểm Pkẻ đường thẳng song song với MN , trên đường thẳng đó lấy
điểm K sao cho PK MN ( K và M ở cùng phía so với NP ). Trong các khẳng định sau,
khẳng định nào đúng?
A. MNP=MKP . B. MNP=KMP .
C. MNP=KPM . D. MNP=PKM .
a: Xét ΔMPK và ΔPMN có
MK=PN
góc KMP=góc NPM
MP chung
=>ΔMPK=ΔPMN
b: ΔMPK=ΔPMN
=>PK=MN
c: Xét tứ giác MNPK có
MK//NP
MK=NP
=>MNPK là hình bình hành
=>MN//PK
1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC
a, Tứ giác BMNC là hình gì ?
b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?
c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .
d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông
2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E
a, Chứng minh tam giác BME cân
b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?
c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng
d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Em viết đề chính xác lại nhé. Đề sai tùm lum rồi!
Cho tam giác MNP . Qua M kẻ đường thẳng song song với np qua P kẻ đường thẳng song song với MN , hai đường thẳng cắt nhau tại q
a . chứng minh tam giác mbn = tam giác bqm
b. Chứng minh tam giác mqn = tam giác bnq
c. Gọi O là giao điểm của MP và nq chứng minh tam giác MNP bằng tam giác poq
cho nửa đường tròn tâm O đường kính MN=5cm. Trên nửa đường tròn lấy điểm P sao cho MP=3.Vẽ PH vuông góc với MN H thuộc MN
a) cm: tam giác MNP vuông từ đó tính MH,PH, goc MNP
b) qua O vẽ đường thẳng song song với NP cắt tiếp tuyến tại M của nửa đường tròn tại I.
CM: IP là tiếp tuyến của đường tròn (O)
c) gọi K là giao điểm của NI và PH. Chứng minh K là trung điểm PH
Cho tam giác MNP có góc M bằng 90 độ. Đường thẳng MH vuông góc nới NP tại H. Qua điểm N vẽ đường thẳng ab song song với MH.
a) Chứng minh ab vuông góc với MH
b) Trên nửa mặt phẳng bờ NP ko chứa M, lấy điểm Q thuộc đường thẳng ab sao cho NQ=MH. Chứng minh tam giác MHN= tam giác QNH và MN song song HQ
c) Gọi I là giao điểm của MO và NP. Chứng minh I là trung điểm của NH.
d) Biết góc NQH=55 độ. Tính góc MPN.
cho tam giác ABC kẻ tia phân giác Bx của góc B , Bx cắt AC tại M. từ M kẻ đường thẳng song song với AB , nó cắt BC tại N . từ N kẻ Ny SONG SONG VỚI Bx chứng minh; a) góc xBC = góc BMN .
b) Ny là tia phân giác của góc MNC . c) gọi P là giao điểm của Ny và AC . trên tia đối của tia MB lấy điểm Q sao cho MQ=NP . chứng minh tam giác MNP = tam giác PQM , MN // PQ
Cho tam giác ABC (CA<CB), trên BC lấy các điểm M và N sao cho BM=MN=NC . Qua điểm m kẻ đường thẳng song song vớ AB cắt AN tại I.
a) Chứng minh: I là trung điểm của AN
b) Qua K là trung điểm của AB kẻ đường thẳng vuông góc với đường phân giác góc ACB cắt đường thẳng AC tại E, đường thẳng BC tại F. Chứng minh AE=BF
a) Xét ΔNAB có
I\(\in\)NI(gt)
M\(\in\)NB(gt)
IM//AB(gt)
Do đó: \(\dfrac{NI}{AI}=\dfrac{NM}{BM}\)(Định lí Ta lét)
\(\Leftrightarrow\dfrac{NI}{AI}=1\)
\(\Leftrightarrow NI=AI\)
mà A,I,N thẳng hàng(gt)
nên I là trung điểm của AN(Đpcm)