Tính diện tích xung quanh S x q của hình trụ có đường cao h = 2 a và thể tích V = 8 π a 3
A. S x q = 48 πa 2
B. S x q = 36 πa 2
C. S x q = 8 πa 2
D. S x q = 16 πa 2
Tính diện tích xung quanh S x q của hình trụ có đường cao h = a và thể tích V = πa 3
A. S x q = 4 πa 2
B. S x q = 6 πa 2
C. S x q = 8 πa 2
D. S x q = 2 πa 2
Chọn D.
+ Thể tích hình trụ được tính bằng công thức V = πr2h
+ Diện tích xung quanh của hình trụ là Sxq = 2πrh = 2πa2.
Tính diện tích xung quanh S x q của hình trụ có đường cao h = a và thể tích V = πa 3
A. S x q = 4 π a 2
B. S x q = 2 π a 2
C. S x q = 8 π a 2
D. S x q = 6 π a 2
Chọn B.
+ Thể tích hình trụ được tính bằng công thức V = πr2.h
+ Diện tích xung quanh của hình trụ là Sxq = 2πrh = 2π.a.a = 2πa2.
Cho một hình cầu và hình trụ ngoại tiếp nó (đường kính đáy và chiều cao của hình trụ bằng đường kính của hình cầu). Tính tỉ số giữa:
a, Diện tích mặt cầu và diện tích xung quanh của hình trụ
b, Thể tích hình cầu và thể tích hình trụ
a, Tính được S S x q = 1
b, Tính được V h c V h t = 2 3
Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD).
Tính diện tích xung quanh của hình trụ và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH.
Diện tích xung quanh của hình trụ là:
Thể tích của khối trụ là;
Một hình trụ có bán kính r và chiều cao \(h=r\sqrt{3}\)
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ
b) Tính thể tích khối trụ tạo nên bởi hình trụ đã cho
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng \(30^0\). Tính khoảng cách giữa đường thẳng AB và trục của hình trụ ?
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Cho hình trụ có bán kính đáy bằng 3cm và đường cao gấp đôi bán kính đáy a) tính S xung quanh của hình trụ b)tính S toàn phần của hình trụ c)tính thể tích của hình trụ
Đường cao: 3 x 2 = 6(cm)
a, Diện tích xung quanh hình trụ:
\(S_{xq}=2\pi rh=2.\pi.3.6=36\pi\left(cm^2\right)\)
b, Diện tích toàn phần hình trụ:
\(S_{tp}=2.S_{đáy}+S_{xq}=2.\pi r^2+36\pi=2\pi.3^2+36\pi=54\pi\left(cm^2\right)\)
c, Thể tích hình trụ:
\(V=\pi r^2.h=\pi.3^2.6=54\pi\left(cm^3\right)\)
Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm. Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên.
Ta có công thức S xq = 2 π rl với r = 50 cm , l = 50 cm.
Do đó S xq = 2 π .50.50 = π .5000( cm 2 ) và V = π r 2 h = 125000. π ( cm 3 )
Hãy tính:
a) Diện tích xung quanh của một hình trụ có chu vi hình tròn đáy là 13cm và chiều cao là 3cm.
b) Thể tích của hình trụ có bán kính đường tròn đáy là 5mm và chiều cao là 8mm.
Ta có : C = 13cm, h = 3cm
Diện tích xung quanh của hình trụ là :
S Xq = 2 π r ⋅ h = Ch = 13.3 = 39 cm 2
b) Ta có : r = 5mm, h = 8mm
Thể tích hình trụ là :
V = π r 2 h = π ⋅ 5 2 ⋅ 8 = 200 π ≈ 628 mm 3
Diện tích xung quanh của một hình trụ là 192 pi cm2 . biết chiều cao của hình trụ là h=24cm
A) tính bán kính đường tròn đáy
B) tính thể tích hình trụ
a: Chu vi đường tròn đáy là 192/24=8cm
R=8:2:3,14=1,27(cm)
b:V=24*1,27^2*3,14=121,55(cm3)