Cho 2a - b = 7; a ≠ - 7 3 ; b ≠ 7 2 . Tính giá trị của biểu thức
A = 5a − b 3a + 7 + 3b − 2a 2b − 7 .
A. 3
B. 4
C. 1
D. 2
Cho 2a-b=7.Tìm GTBT \(P=\frac{5a-b}{3a+7}-\frac{3b-2a}{2b-7}\)
\(P=\frac{3a+7+2a-b-7}{3a+7}-\frac{2b-7+b-2a+7}{2b-7}\)
mà 2a-b=7 hay b-2a=-7 nên ta có
\(P=1+\frac{7-7}{3a+7}-1-\frac{-7+7}{2b-7}=1+0-1-0=0\)
cho a>b hãy so sánh:
a) 2a+4 và 2b +4
b) 7-2a và 7-2b
c) 5a+3 và 5b-3
d) 2a+5 và 2b-1
a)
`a>b`
`<=>2a>2b`
`<=>2a+4>2b+4`
b)
`a>b`
`<=>-2a<-2b`
`<=>7-2a<7-2b`
c)
`a>b`
`<=>5a>5b`
`<=>5a+3>5b+3`
mà `5b-3<5b+3`
`=>5a+3>5b-3`
d)
`a>b`
`<=>2a>2b`
`<=>2a+5>2b+5`
mà `2b+5>2b-1`
`=>2a+b>2b-1`
cho : 2a-b=7. với b khác 7/2; b khác -7/3. tính P= \(\frac{5a-b}{3a+7}-\frac{3b-2a}{2b-7}\)
cho a>b hãy so sánh:
a) 2a+4 và 2b +4 b) 7-2a và 7-2b c) 5a+3 và 5b-3 d) 2a+5 và 2b-1a)
\(a>b\\ \Leftrightarrow2a>2b\\ \Rightarrow2a+4>2b+4\)
b)
\(a>b\\ \Leftrightarrow-2a>-2b\\ \Rightarrow7-2a>7-2b\)
cho ad=bc chứng minh (a^7-b^7)(/c^7-d^7)=(2a-b)^7/(2c-d)^7
Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a^2b^2}{a^7+a^2b^2+b^7}+\frac{b^2c^2}{b^7+b^2c^2+c^7}+\frac{c^2a^2}{c^7+c^2a^2+a^7}\le1\)
Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)
Thật vậy:
\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)
Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)
\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)
mà \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)
Áp dụng các bđt trên vào bài toán ta có
∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)∑\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)∑\(\frac{a+b+c}{a+b+c}=1\)
Bất đẳng thức được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm
chứng minh bđt "Lại có" ạ
cho a ≠ \(\dfrac{-7}{3}\); b ≠\(\dfrac{7}{2}\) và 2a-b=7. Tính giá trị của biểu thức: \(\dfrac{5a-b}{3a+7}-\dfrac{3b-2a}{2b-7}\)
\(\dfrac{5a-b}{3a+7}\)-\(\dfrac{3b-2a}{2b-7}\)
=\(\dfrac{5a-b}{3a+2a-b}\)-\(\dfrac{3b-2a}{2b-\left(2a-b\right)}\)
=\(\dfrac{5a-b}{5a-b}\)-\(\dfrac{3b-2a}{2b-2a+b}\) (vì 2a-b=7)
=\(\dfrac{5a-b}{5a-b}\)-\(\dfrac{3b-2a}{3b-2a}\)
=1-1
=0
cho a-b=7 (a khác -3.5, b khác 3.5) tính D= 3a-b/2a+7
Vì a-b=7=>a= 7+b
Thay vào biểu thức ta có: 3(7+b)-b/2(7+b)+7= 21+3b-b/14+2b+7= 21+2b/21+2b = 1
Cho biểu thức
P=\(\dfrac{3a-b}{2a+7}\)+\(\dfrac{3b-a}{2b-7}\)
Tính giá trị của P khi a-b=7
a-b=7 nên a=b+7
\(P=\dfrac{3\left(b+7\right)-b}{2\left(b+7\right)+7}+\dfrac{3b-b-7}{2b-7}=1+1=2\)