Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Nguyễn Bảo Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
6 tháng 9 2016 lúc 17:29

Với mọi n là số tự nhiên lẻ, ta có thể biểu diễn n = 2k+1 với k là số tự nhiên

Ta có : \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=\left(2k+2\right)\left(2k+4\right)=2.\left(k+1\right).2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)

mà (k+1)(k+2) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2

Suy ra \(n^2+4n+3\) chia hết cho 2x4 = 8 với mọi n lẻ

soyeon_Tiểubàng giải
6 tháng 9 2016 lúc 17:27

Ta có: 

n2 + 4n + 3

= n2 + n + 3n + 3

= n.(n + 1) + 3.(n + 1)

= (n + 1).(n + 3)

Do n lẻ => n = 2.k + 1 (k thuộc N)

=> (n + 1).(n + 3) = (2.k + 1 + 1).(2.k + 1 + 3)

= (2.k + 2).(2.k + 4)

= 2.(k + 1).2.(k + 2)

= 4.(k + 1).(k + 2)

Vì (k + 1).(k + 2) là tích 2 số tự nhiên liên tiếp => (k + 1).(k + 2) chia hết cho 2

-=> 4.(k + 1).(k + 2) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 (đpcm)

Lê Nguyên Hạo
6 tháng 9 2016 lúc 17:28

\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)

\(\text{n = 2k + 1}\) (lẻ)

Do đó: \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)\)

\(=2\left(k+1\right)2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)

Có: (k + 1)(k + 2) = 2k 

\(\Rightarrow4\left(2k+1\right)\left(k+2\right)=4.2k=8k⋮8\left(\text{đ}pcm\right)\)

 

Trần Thị Thanh Thư
Xem chi tiết
lớp 10a1 tổ 1
29 tháng 10 2015 lúc 22:07

a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)

vì n chẵn nên đặt n=2k

\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)

vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2

=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16

\(n^3+4n=n^3-4n+8n\)

đặt n=2k

=>\(8\left(k-1\right)k\left(k+1\right)+16k\)

mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16

Trần Thị Thanh Thư
Xem chi tiết
Nguyễn Khánh Hà
Xem chi tiết
Thieu Gia Ho Hoang
14 tháng 2 2016 lúc 16:04

bai toan nay kho quá

Magic Kaito
Xem chi tiết
Nguyễn Nho Dũng
21 tháng 7 2016 lúc 21:20

có n2+4n+3=(n+1)(n+3) mà n lẻ suy ra n2+4n+3 là tích 2 số chẵn liên tiếp

mà hai số chẵn liên tiếp thì sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 4=>n2+4n+3chia hết cho 8

Khánh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 13:10

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

Nguyễn Khả Hân
Xem chi tiết
Nguyễn Văn Phước
Xem chi tiết
Thiên Thần Nhỏ
Xem chi tiết
 .
3 tháng 9 2019 lúc 19:54

\(n^2+4n+3=n^2+2.n.2+2^2-1\)

\(=\left(n+2\right)^2-1\)

\(=\left(n+2-1\right).\left(n+2+1\right)\)

\(=\left(n-1\right).\left(n+3\right)⋮8\)

Lê Hồ Trọng Tín
3 tháng 9 2019 lúc 19:56

Ta có n2+4n+3=(n+1)(n+3)

Vì n là số lẻ nên (n+1)và (n+3) là hai số tự nhiên chẵn liên tiếp

Do đó một trong hai số có một số chia hết cho 4 khi đó số còn lại chia hết cho 2

Vậy tích (n+1)(n+3) chia hết cho 8 và ta có điều phải chứng minh

zZz Cool Kid_new zZz
3 tháng 9 2019 lúc 20:15

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=n\left(n+3\right)+\left(n+3\right)\)

\(=\left(n+1\right)\left(n+3\right)\)

Do n lẻ ta đặt \(n=2k+1\)

Ta có:\(\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

Mà \(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên \(\left(k+1\right)\left(k+2\right)⋮2\)

Khi đó:\(n^2+4n+3=4\left(k+1\right)\left(k+2\right)⋮8\)