Tìm x,y,z thuộc Z để x^2+y^2+z^2=2015
tìm giá trị nhỏ nhất của A=|x+5|+|y+20|+2015 (x,y thuộc Z)
tìm giá trị lớn nhất của B= -|x-30|-|y-2|+2015 (x,y thuộc Z)
ho x^2 + y^2 + z^2 =xy + yz + xz và z^2015 + y^2015 + z^2015=3^2016 .Tìm x,y,z
Có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)
Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)
\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\)
\(\Leftrightarrow x=3\)
Vậy \(x=y=z=3\)
1. Tìm GTNN của A=x^4-6x^3+10x^2-6x+2015.
2.Tìm bộ 3 số nguyên (x,y,z) thỏa mãn:
x(y-z)^2(y+z-x)^3+z(x-y)^2(x+y-z)^2=2015
Cho x,y,z>0 thỏa mãn 1/x+1/y+1/z=2015. Tìm GTLN của (x+y)/(x^2+y^2) + (y+z)/(y^2+z^2) + (z+x)/(z^2+x^2)
tìm các số x,y,z biết
x^2+y^2+z^2=xy+yz+zx và x^2015+y^2015+z^2015=3^2016
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
cau a ban de o hang dang thuc (x-y-z)^2 di
Tìm x;y thuộc Z biết : 25-y^2=8*(x-2015)^2
Tìm x, y thuộc Z sao cho x^2+xy=2015; y^2+3xy=99
Tìm x, y, z thuộc N* để : 3^x + 2^y = 1 + 2^z.
Tìm x,y,z biết : \(x^2+y^2+z^2=xy+yz+zx\)và \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)
\(x^2+y^2+z^2=xy+yz+xz\)
\(2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì mũ chẵn luôn lớn hơn hoặc bằng 0
\(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow}}x=y=z\)
\(\Rightarrow x^{2015}+y^{2015}+z^{2015}=x^{2015}+x^{2015}+x^{2015}=3x^{2015}\)
\(\Rightarrow3x^{2015}=3^{2016}\)
\(\Rightarrow x^{2015}=3^{2015}\)
\(\Rightarrow x=3\)
Vậy \(x=y=z=3\)