Cho hàm số f(x) có f ( 1 ) = 1, f ( m + n ) = f ( m ) + f ( n ) + m n , ∀ m , n ∈ ℕ * . Giá trị của biểu thức T = log f ( 96 ) − f ( 69 ) − 241 2 là
A.4
B.3
C.6
D.9
Cho hàm số f(x) có f ( 1 ) = 1 , f ( m + n ) = f ( m ) + f ( n ) + m n , ∀ m , n ∈ ℕ * . Giá trị của biểu thức T = log f ( 96 ) − f ( 69 ) − 241 2 là
A. 4
B. 3
C. 6
D. 9
Cho hàm số f ( x ) = 1 2 log 2 ( 2 x 1 - x ) và hai số thực m, n thuộc khoảng (0; 1) sao cho m +n = 1. Tính f(m) + f(n).
A. 2
B. 0
C. 1
D. 1 2
cho hàm số f(x) xác định trên tập N biết f(2)=0, f(3)>0, f(2001)=667 và f(m)+f(n)<=f(m+n)<=f(m)+f(n)+1
Cho hàm số f ( x ) = 1 2 log 2 2 x 1 - x và hai số thực m, n thuộc khoảng (0;1) sao cho m + n = 1 . Tính f ( m ) + f ( n )
A. 2
B. 0
C. 1
D. 1 2
Cho hàm số f(x) có đồ thị của hàm số f'(x) như hình vẽ. Biết f(0) + f(1) - 2f(2) = f(4) - f(3). Giá trị nhỏ nhất m, giá trị lớn nhất M của hàm số f(x) trên đoạn [0;4] là
A. m = f(4), M = f(1)
B. m = f(4), M = f(2)
C. m = f(1), M = f(2)
D. m = f(0), M = f(2)
Chọn B
Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:
Từ bảng biến thiên ta có
Mặt khác
Suy ra
Cho hàm số f(x) có đạo hàm là hàm f'(x). Đồ thị hàm số f'(x) như hình vẽ bên. Biết rằng f(0) + f(1) - 2f(2) = f(4) - f(3). Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của f(x) trên đoạn [0;4].
A. m = f(4), M = f(2)
B. m = f(1), M = f(2)
C. m = f(4), M = f(1)
D. m = f(0), M = f(2)
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
Cho hàm số y=f(x)=(m-2)x có đồ thị đi qua điểm A(10;-15)
a) Tìm m
b) Vẽ đồ thị hàm số
c) Tính f(-2); f(-1); f(0); f(1/2)
d) Chứng tỏ rằng: f(-4)-f(-6)=f(2)
a: Thay x=10 và y=-15 vào f(x), ta được:
10m-20=-15
=>10m=5
hay m=1/2
hàm số f(x)cho bởi công thức ;f(x)=x^2-x+1.CMR với mọi m thuộc N,m>1 thì m,f(m),f(f(m))nguyên tố cùng nhau từng đôi một
Cho hàm số f ( x ) = e 1 + 1 x 2 + 1 ( x + 1 ) 2 , biết rằng f ( 1 ) . f ( 2 ) . f ( 3 ) . . . f ( 2017 ) = e m n với m, n là các số tự nhiên và m 2 tối giản. Tính m - n 2
A. m - n 2 = 2018
B. m - n 2 = 1
C. m - n 2 = -2018
D. m - n 2 = -1