Có bao nhiêu giá trị nguyên của tham số m để hàm số y = log x 2 - 2 x m + 3 + 2019 xác định với mọi x ∈ R ?
A. Vô số
B. 2019
C. 2020
D. 2018
3. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+1}{x+3m}\) nghịch biến trên khoảng(6;+\(\infty\) )?
4. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+2}{x+3m}\) đồng biến trên khoảng (-\(\infty\);-6)?
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Số các giá trị nguyên của tham số m để hàm số y = log ( m x - m - 2 ) xác định trên [ 1 2 ; + ∞ ) là:
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x + m x 2 + 2 đồng biến trên ℝ ?
A. 1
B. 2
C. 4
D. 3
Chọn D.
Ta có: y = x + m x 2 + 2
⇒ y ' = 1 + m x x 2 + 2
Hàm số đã cho đồng biến trên ℝ
và f ' x = 0 tại hữu hạn điểm.
+) Với x = 0 ⇒ y ' ≥ 0 ∀ m ⇒ t m
+) Với x > 0 ta có: (*)
+) Với x < 0 ta có: (*)
Xét g x = - x 2 + 2 x x # 0 t a c ó :
g ' x = 2 x 2 x 2 + 2 > 0 ∀ x ∈ ℝ
⇒ Hàm số đồng biến trên trên - ∞ ; 0 v à 0 ; + ∞
BBT:
Từ BBT ta được: - 1 ≤ m ≤ 1 thỏa mãn bài toán
Mà m ∈ ℤ ⇒ m ∈ - 1 ; 0 ; 1
Cho hàm số \(y=-2x^3+(2m-1)x^2-(m^2-1)x+2\). Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có hai điểm cực trị?
\(y'=-6x^2+2\left(2m-1\right)x-\left(m^2-1\right)\)
Hàm có 2 cực trị khi:
\(\Delta'=\left(2m-1\right)^2-6\left(m^2-1\right)>0\)
\(\Rightarrow-2m^2-4m+7>0\)
\(\Rightarrow-\dfrac{2+3\sqrt{2}}{2}< m< \dfrac{-2+3\sqrt{2}}{2}\)
\(\Rightarrow m=\left\{-3;-2;-1;0;1\right\}\)
Cho hàm số f ( x ) = m - 2 x 3 - 2 2 m - 3 x 2 + 5 m - 3 x - 2 m - 2 với m là tham số thực. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = f x có 5 điểm cực trị?
A. 0.
B. 3.
C. 2.
D. 1.
Hàm số y = f x với f(x) là hàm đa thức bậc 3 có 5 điểm cực trị khi và chỉ khi hàm số f(x) có hai cực trị và đồ thị của hàm số cắt trục hoành tại 3 điểm phân biệt.
Mặt khác, f(x) là hàm số bậc 3 nên khi đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt thì hàm số đồng thời cũng có hai cực trị. Do đó ta chỉ cần tìm điều kiện để phương trình f(x) = 0 có 3 nghiệm phân biệt.
Chọn D
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để hàm số y=(m-2)x+2 đồng biến trên R?
A. 2017
B. 2015
C. Vô số
D. 2016
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để hàm số y = (m-2)x + 2 đồng biến trên ℝ ?
A. 2017
B. 2015
C. Vô số
D. 2016
Chọn D
Phương pháp:
Sử dụng: Hàm số y = ax+b đồng biến ⇔ a > 0, từ đó kết hợp điều kiện đề bài để tìm các giá trị của m.
Cách giải:
Hàm số y = (m-2)x + 2 đồng biến trên ℝ ⇔ m - 2 > 0 ⇔ m > 2
Mà => có 2016 giá trị nguyên của m thỏa mãn đề bài.
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x + 1 ) ( x 2 + 2 m x + 4 ) . Có bao nhiêu giá trị nguyên âm của tham số m để hàm số y = f ( x ) 2 có đúng một điểm cực trị.
A. 1.
B. 4.
C. 2.
D. 3.
Cho hàm số y=f(x) có đạo hàm f'(x) = ( x - 1 ) 2 ( x 2 - 2 x ) với ∀ x ∈ ℝ . Có bao nhiêu giá trị nguyên dương của tham số m để hàm số có 5 điểm cực trị?
A. 15
B. 17
C. 16
D. 18
Cho hàm số y=f(x) có đạo hàm f’(x)=(x-1)2(x2-2x) với mọi x ∈ R . Có bao nhiêu giá trị nguyên dương của tham số m để hàm y=f(x2-8x+m) có 5 điểm cực trị
A. 15
B. 17
C. 18
D. 16