Tìm phân thức P biết : P : 4 x 2 - 16 2 x + 1 = 4 x 2 + 4 x + 1 x - 2
Tìm phân thức P biết
P : 4 x mũ 2 - 16 phần 2 x+1 = 4 x mũ 2 + 4x +1 phần x - 2
\(P:\frac{4x-2-16}{2x+1}=\frac{4x^2+4x+1}{x-2}\)
\(\Rightarrow P=\frac{4x^2+4x+1}{x-2}.\frac{4x^2-16}{2x+1}\)
= \(\frac{\left(2x+1\right)^2}{x-2}.\frac{4.\left(x-2\right)\left(x+2\right)}{2x+1}\)
\(\Rightarrow P=4.\left(2x+1\right).\left(x+2\right)\)
\(=4.\left(2x^2+x+4x+2\right)\)
= \(8x^2+40x+8\)
Chúc bạn học tốt !!!
Bài 1: Tìm x biết: (x - 4)(x^2 + 4x + 16) - x(x^2 - 6)=2
Bài 2: Phân tích đa thức thành nhân tử:
a) x^3 - 27 + 3x(x-3)
b) 5x^3 - 7x^2 +10x -14
Giúp mk vs ạ
(x - 4)(x2 + 4x + 16) - x(x2 - 6) = 2
x3 - 64 - x3 + 6x = 2
6x = 2 + 64
6x = 66
x = 66 : 6
x = 11
x3 - 27 + 3x(x - 3)
= (x - 3)(x2 + 3x + 9) + 3x(x - 3)
= (x - 3)(x2 + 3x + 9 + 3x)
= (x - 3)(x2 + 6x + 9)
= (x - 3)(x + 3)2
5x3 - 7x2 + 10x - 14
= 5x(x2 + 2) - 7(x2 + 2)
= (x2 + 2)(5x - 7)
Bài 9: Cho biểu thức: [(4/x-4)-(4/x-4)].(x^2+8x+16/32)
a) Tìm điều kiện của x để phân thức xác định?
b) Tìm giá trị của x để phân thức có giá trị bằng 1/3
c) Tìm giá trị của x để phân thức có giá trị bằng 1
d) Tìm giá trị nguyên của x để phân thức có giá trị nguyên?
e) Tìm giá trị của x để phân thức luôn dương?
Sửa đề: \(\left\lbrack\frac{4}{x-4}-\frac{4}{x+4}\right\rbrack\cdot\frac{x^2+8x+16}{32}\)
Đặt \(A=\left\lbrack\frac{4}{x-4}-\frac{4}{x+4}\right\rbrack\cdot\frac{x^2+8x+16}{32}\)
a: ĐKXĐ: x∉{4;-4}
b: \(A=\left\lbrack\frac{4}{x-4}-\frac{4}{x+4}\right\rbrack\cdot\frac{x^2+8x+16}{32}\)
\(=\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\cdot\frac{\left(x+4\right)^2}{32}\)
\(=\frac{4x+16-4x+16}{x-4}\cdot\frac{x+4}{32}=\frac{32}{x-4}\cdot\frac{x+4}{32}=\frac{x+4}{x-4}\)
\(A=\frac13\)
=>\(\frac{x+4}{x-4}=\frac13\)
=>3(x+4)=x-4
=>3x+12=x-4
=>2x=-16
=>x=-8(nhận)
c: A=1
=>x+4=x-4
=>4=-4(loại)
=>x∈∅
d: Để A nguyên thì x+4⋮x-4
=>x-4+8⋮x-4
=>8⋮x-4
=>x-4∈{1;-1;2;-2;4;-4;8;-8}
=>x∈{5;3;6;2;8;0;12;-4}
Kết hợp ĐKXĐ, ta được: x∈{5;3;6;2;8;0;12}
e: Để A>0 thì \(\frac{x+4}{x-4}>0\)
=>x-4>0 hoặc x+4<0
=>x>4 hoặc x<-4
Câu 1: Phân tích đa thức x^2 - 16 thành nhân tử
Câu 2: Tìm x biết 3x(x-5)+2(x-5)=0
câu 1:
x2-16=x2-42=(x+4)(x-4)
câu 2:
3x(x-5)+2(x-5)=0
(3x+2)(x-5)=0
TH1: 3x+2=0 TH2: x-5=0
3x=-2 x=5
x=-2/3
vậy x\(\in\)\(\left\{\dfrac{-2}{3};5\right\}\)
x^5+x^4-16x-16/x^3-6x^2-9x+14
a)Tìm điều kiện của x để giá trị các phân thức được xác định
b)Rút gọn phân thức
c)Tìm giá trị của x để giá trị của phân thức bằng 0
d)Tìm giá trị của phân thức A tại x=3
1)Tìm giá trị của m để pt \(\left(m^2-9\right)x=m^2-5m+6\)có nghiệm là số âm
2)Cho biết \(2x^2+\frac{14}{x^2}+\frac{y^2}{2}=16\)Tìm giá trị lớn nhất, nhỏ nhất của biểu thức B=xy
3)Tìm các số nguyên dương x, y, z thỏa mãn: 16(xyz+x+z)=21(yz+1)
4)Biết rằng đa thức f(x)=x2+mx+n+1 có 2 nghiệm là 2 số nguyên dương phân biệt. Cm m2+n2 là hợp số
cho phân thức B=x*2-8x+16/x-4
a,tìm x để B =1
b,tìm x để B=1
c, rút gọn B
phân thức xác định khi và chỉ khi x khác 4.
\(B=\frac{x^2-8x+16}{x-4}\)
\(=\frac{\left(x-4\right)^2}{x-4}\)
\(=x-4\)
Để B=1 => x-4 = 1
<=>x=5 (thỏa mãn)
Vậy B=1 khi và chỉ khi x=5.
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
Giúp mình với !
Bài 1: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a, 9(a-b)^2-4(x-y)^2
b, (a^2+9)^2-36a^2
c, (x+y)^2-2(x+y)+1
d, (x-y)(x^2-z^2)-(x-z)(x^2-y^2)
Bài 2: Tìm x, biết
a, x^2+16=8x
b, 10x-x^2=25
bài 11 phân tích đa thức thành nhân tử
a,\(x^2-xy+x\) b,\(x^2-2xy-4+y^2\) c,\(x^3-x^2-16x+16\)
bài 12 tìm x biết :
a,\(2x\left(x-5\right)-x\left(3+2x\right)=26\) b,\(2\left(x+5\right)-x^2-5x=0\)
bài 11
a) \(x^2-xy+x\\ =x\left(x-y+1\right)\)
b)
\(x^2-2xy-4+y^2\\ =\left(x^2-2xy+y^2\right)-4\\ =\left(x-y\right)^2-4\\ =\left(x-y-2\right)\left(x-y+2\right)\)
c)
\(x^3-x^2-16x+16\\ =x^2\left(x-1\right)-16\left(x-1\right)\\ =\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
bài 12
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x=26\\ x=-2\)
b)
\(2\left(x+5\right)-x^2-5x=0\\ 2\left(x+5\right)-x\left(x+5\right)=0\\ \left(x+5\right)\left(2-x\right)=0\\ \left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)