Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Duy Anh
Xem chi tiết
hồ nghĩa trường
Xem chi tiết
Ngô Thanh Thúy
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 3 2023 lúc 0:53

b: góc FAK=góc FCK=90 độ

=>ACFK nội tiếp

=>góc CAF=góc CKF

a: góc AKF=180 độ-góc ACF=180 độ-90 độ-45 độ=45 độ

=>ΔAKF vuông cân tại A

Doraemon
Xem chi tiết
Phước Nguyễn
30 tháng 3 2016 lúc 18:42

Bài này ngó qua ngó lại thì không khó lắm. Tối giải nha. 

mad vocaloid
Xem chi tiết
Đặng Đức Bách
Xem chi tiết
Thầy Kim
3 tháng 11 2021 lúc 12:23

bạn có cách giải bài này chưa ạ , nếu có r thỉ mik với đc k ạ hihi

Gallavich
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 3 2021 lúc 16:56

a.

Xét hai tam giác vuông ABE và ADH:

\(AD=AB\)

\(\widehat{BAE}=\widehat{DAH}\) (cùng phụ \(\widehat{DAE}\))

\(\Rightarrow\Delta_vABE=\Delta_vADH\) (góc nhọn-cạnh góc vuông) (1)

\(\Rightarrow AH=AE\)

\(\Rightarrow\Delta AHE\) vuông cân tại A

b. Cũng từ (1) ta có \(BE=DH\)

Xét hai tam giác vuông ABE và FDA có:

\(\widehat{BAE}=\widehat{AFD}\) (so le trong)

\(\Rightarrow\Delta_vABE\sim\Delta_vFDA\)

\(\Rightarrow\dfrac{AB}{DF}=\dfrac{BE}{AD}\Rightarrow AB.AD=BE.DF\Rightarrow AB^2=HD.DF\) (do AD=AB và BE=HD)

c. Ta có: \(\left\{{}\begin{matrix}S_{HAF}=\dfrac{1}{2}AH.AF\\S_{HAF}=\dfrac{1}{2}AD.HF\end{matrix}\right.\) \(\Rightarrow AH.AF=AD.HF\)

\(\Rightarrow\dfrac{1}{AD}=\dfrac{HF}{AH.AF}\Rightarrow\dfrac{1}{AD^2}=\dfrac{HF^2}{AH^2.AF^2}=\dfrac{AH^2+AF^2}{AH^2.AF^2}\)

\(\Leftrightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AH^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (do AH=AE theo chứng minh câu a)

\(\Leftrightarrow\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\) cố định (đpcm)

Nguyễn Việt Lâm
27 tháng 3 2021 lúc 16:56

undefined

Lê Vũ Anh Thư
Xem chi tiết