Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kieu tien hoang
Xem chi tiết
Charlotte Ngân
Xem chi tiết
Bỉ Ngạn Hoa
Xem chi tiết
Vũ Đăng Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2021 lúc 21:27

Ta có: a+b+c=0

nên \(\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Leftrightarrow2ab+2ac+2bc=-1\)

\(\Leftrightarrow ab+ac+bc=\dfrac{-1}{2}\)

\(\Leftrightarrow\left(ab+ac+bc\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{1}{4}\)

Ta có: \(a^2+b^2+c^2=1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4+2\cdot\dfrac{1}{4}=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{2}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)

Vậy: \(a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{3}{4}\)

NGUYỄN ĐỖ BẢO VY
Xem chi tiết
adsv
Xem chi tiết
lê thanh tùng
Xem chi tiết
Vũ Đình Sơn
Xem chi tiết
Nguyễn Thị BÍch Hậu
30 tháng 6 2015 lúc 13:15

\(a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1\Leftrightarrow0-2\left(ab+bc+ca\right)=1\Leftrightarrow ab+bc+ca=-\frac{1}{2}\)

\(M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=1^2-2\left[\left(ab+bc+ca\right)^2-2\left(ab^2c+abc^2+a^2bc\right)\right]\)

\(=1-2\left(\frac{1}{4}-2abc\left(a+b+c\right)\right)=1-\frac{1}{2}+4abc.0=\frac{1}{2}\)

Đặng Minh Thu
Xem chi tiết