Giả sử ∫ 1 2 4 ln x + 1 x d x = a l n 2 2 + b l n 2 , với a, b là các số hữu tỉ. Khi đó tổng 4a+b bằng
A. 3
B. 5
C. 7
D. 9
\(x^2-\left(m+4\right)x+m^2+2m-1=0\). Giả sử \(x_0\) là nghiệm của phương trình đã cho. Tìm GTLN và GTNN của \(x_0\)
Do x0 là nghiệm của phương tình x2-m(m+4)x+m2+2m-1=0 nên tồn tại m để x02 -(m+4)x0+m2+2m-1=0
<=> m2+(2-x0)m+x02-4x0 -1=0 có nghiệm
<=> (2-x0)2 -4(x02-4x0-1) >=0
<=> -3x02+12x0+8 >=0
<=> \(\frac{6-2\sqrt{15}}{3}\le x_0\le\frac{6+2\sqrt{15}}{3}\)
Tự xử lý phần dấu "="
Giả sử x là nghiệm của phương trình: l g 1 + x + 3 l g 1 - x = l g 1 - x 2 + 2
Khi đó ta có
A. lg(1 - x) = 1
B. l g ( 1 - x ) = 3
C. lg(1 - x) < 1
D. l g ( 1 - x ) > 3
Giả sử 4 số tự nhiên đầu tiên (1,2,3,4)đã được lưu trữ theo thứ tự vào mảng A, bắt đầu là A[1]. Đoạn lệnh Pascal sau đây sẽ viết ra các giá trị nào (theo thứ tự)?
for i:= 1 to 3 do write(3* a[i+1],’ ‘);
Giả sử mảng A có các phần tử sau:
2 4 5 6
Lệnh Pascal write(a[2]); sẽ viết ra màn hình giá trị nào?
Cho mảng a có 4 phần tử: 3 4 5 6.
Lệnh : write(a[1]) in gì ra màn hình:
giúp mk trước 5h chiều nay
giả sử x,y là những số thực dương phân biệt thỏa mãn:
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR: 5y=4x
Giả sử x, y, z là những số thực lớn hơn 2. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{x}{\sqrt{y+z-4}}+\frac{y}{\sqrt{z+x-4}}+\frac{z}{\sqrt{x+y-4}}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+y-4}=a>0\\\sqrt{y+z-4}=b>0\\\sqrt{z+x-4}=c>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{a^2+c^2-b^2+4}{2}\\y=\frac{a^2+b^2-c^2+4}{2}\\z=\frac{b^2+c^2-a^2+4}{2}\end{matrix}\right.\)
\(P=\frac{a^2+c^2-b^2+4}{2b}+\frac{a^2+b^2-c^2+4}{2c}+\frac{b^2+c^2-a^2+4}{2a}\)
\(2P=\frac{a^2}{b}+\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{c}+\frac{b^2}{a}+\frac{c^2}{a}-a-b-c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
Mà \(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)
Tương tự với các số hạng còn lại và cộng lại ra được:
\(2P\ge4a+4b+4c-2a-2b-2c-a-b-c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(2P\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(2P\ge2\sqrt{\frac{4a}{a}}+2\sqrt{\frac{4b}{b}}+2\sqrt{\frac{4c}{c}}=12\)
\(\Rightarrow P\ge6\)
\(\Rightarrow P_{min}=6\) khi \(a=b=c=2\) hay \(x=y=z=4\)
giả sử x1 và x2 là hai nghiệm của pt bậc 2 \(3x^2-cx+2c-1=0\). tính theo c giá trị của biểu thức \(S=\frac{1}{x^3}+\frac{1}{x^3}\)
Theo hệ thức viete :\(\int^{x1+x2=\frac{c}{3}}_{x1x2=\frac{2c-1}{3}}\)
Ta có S = \(\frac{1}{x1^3}+\frac{1}{x2^3}=\frac{x1^3+x2^3}{\left(x1x2\right)^3}=\frac{\left(x1+x2\right)^3-3x1x2\left(x1+x2\right)}{\left(x1x2\right)^3}\)
Giờ thay vào và rút gọn
Trần Đức Thắng bạn ghi kết quả cuối cùng cho mk đc ko>? mk làm bài này ra rồi nhưng sai kết quả cuối
Giả sử a,b,c là 3 cạnh của 1 tam giác.Cm pt sau vô nghiệm
b2x2 +(b2+c2-a2)x +c2=0
\(\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)
\(=\left(b^2+c^2-a^2\right)^2-\left(2bc\right)^2\)
\(=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)\)
\(=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)
\(=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)
Theo định lý tam giác, ta luôn có:
\(\left\{{}\begin{matrix}b< a+c\\a+b>c\\b+c>a\\a+b+c>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b-a-c< 0\\a+b-c>0\\b+c-a>0\\a+b+c>0\end{matrix}\right.\) \(\Rightarrow\Delta< 0\)
\(\Rightarrow\) Pt đã cho vô nghiệm
Giả sử x là nghiệm của phương trình log x 25 - log x 4 = log x x . Tính x 1 2
A. 21
B. 5 2
C. 25 4
D. 625 16
Giả sử x1, x2 là 2 nghiệm của phương trình : x^2 +2kx +4 = 4.
Tìm tất cả cácgiá trị của k sao cho có bất đẳng thức:
(x1/x2)^2 + (x2/x1)^2 >= 3
Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A’B’C’D’ có A(1;2;-1);C(3;-4;1),B'(2;-1;3) và D'(0;3;5). Giả sử tọa độ D(x;y;z) thì giá trị của x+2y-3z là kết quả nào sau đây
A. 1
B. 0
C. 2
D. 3