a+b =11 c+b=-5 c+a=2
tim a b c thuocZ
1 Khẳng định nào đúng?
(A) Nếu a=b thì a-c=b-c
(B) nếu a-c=b-c thì a=b
(C) Nếu a=b thì a=c=b-c
(D) Nếu a-c=c-b thì a+b =2c
2Tim số nguyên x
x - (1-x)=5+(-1 + x)
1.khang dinh A,B,D dung
2,x-(1-x)=5+(-1+x)
x-1+x=5-1+x
2x-1=4+x
2x-x=4+1
x=5
Vay x=5
co bai kho hoi mik nhe
Cho a,b,c>0 t/m a+b+c=2
Tim GTLN của \(Q=\dfrac{ab}{\sqrt{ab+2c}}+\dfrac{bc}{\sqrt{bc+2a}}+\dfrac{ca}{\sqrt{ca+2b}}\)
Ta có: $\sqrt[]{ab+2c}=\sqrt[]{ab+(a+b+c)c}=\sqrt[]{ab+ac+bc+c^2}=\sqrt[]{(c+a)(c+b)}$ (do $a+b+c=2$)
Nên $\dfrac{ab}{\sqrt[]{ab+2c}}=\dfrac{ab}{\sqrt[]{(c+a).(c+b)}}=ab.\sqrt[]{\dfrac{1}{a+c}.\dfrac{1}{b+c}}$
Áp dụng bất đẳng thức Cauchy cho $\dfrac{1}{a+c};\dfrac{1}{b+c}>0$ có:
$\sqrt[]{\dfrac{1}{a+c}.\dfrac{1}{b+c}} \leq \dfrac{1}{2}.(\dfrac{1}{a+c}+\dfrac{1}{b+c})$
Nên $\dfrac{ab}{\sqrt[]{ab+2c}} \leq \dfrac{1}{2}.ab.(\dfrac{1}{a+c}+\dfrac{1}{b+c})= \dfrac{1}{2}.(\dfrac{ab}{a+c}+\dfrac{ab}{b+c})$
Tương tự ta có: $\dfrac{bc}{\sqrt[]{bc+2a}} \leq \dfrac{1}{2}.(\dfrac{bc}{a+b}+\dfrac{bc}{a+c})$
$\dfrac{ca}{\sqrt[]{ca+2b}} \leq \dfrac{1}{2}.(\dfrac{ca}{b+a}+\dfrac{ca}{b+c})$
Nên $Q \leq \dfrac{1}{2}.(\dfrac{ab}{a+c}+\dfrac{ab}{b+c})+\dfrac{1}{2}.(\dfrac{bc}{a+b}+\dfrac{bc}{a+c})+ \dfrac{1}{2}.(\dfrac{ca}{b+a}+\dfrac{ca}{b+c})=\dfrac{1}{2}(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{ca}{b+a}+\dfrac{ca}{b+c})=\dfrac{1}{2}.(\dfrac{b(a+c)}{a+c}+\dfrac{a(b+c)}{b+c}+\dfrac{c(a+b)}{a+b}=\dfrac{1}{2}.(a+b+c)=1$ (do $a+b+c=2$)
Dấu $=$ xảy ra khi $a=b=c=\dfrac{2}{3}$
1 tìm x thuộc z
a, x/25=-4/-x
b,x/10=11/x+1
2tim x thuộc z
a,x/x+5=x/x+y
b,x-7/y-8=7/8 c, x-y=4
giúp mình nhanh với nhé các bạn mình đang cần gấp
Bài 1:
a: \(\dfrac{x}{25}=\dfrac{-4}{-x}=\dfrac{4}{x}\)
\(\Leftrightarrow x^2=100\)
=>x=10 hoặc x=-10
b: \(\dfrac{x}{10}=\dfrac{11}{x+1}\)
\(\Leftrightarrow x^2+x-110=0\)
=>(x+11)(x-10)=0
=>x=10 hoặc x=-11
bai 6 hay chung to
a] neu a+b=c thi a=-b+c
b ] neu a-b=c thi a=b+c
bai 7 hay chung to
|a-b|=|b-a|
bai 8 tim x thuocZ biet
a] 6-|x|=2
b ] 6+|x|=2
to dang gap mong cac ban tra loi nhanh minh like phat
8)
a)6-|x|=2
=>6-x=2
x=6-2
x=4
b)6+|x|=2
=>6+x=2
x=2-6
x=-4
1tim x ∈ Z thoa man
a)/x/+/-5/=/-37/ b)/-6/./x/=/54/
c)/x/>21 d)/x/<-1
2tim x
a)x+3=/-3/+/-7/ b)-2</x/<2
a) |x| + |-5| = |-37|
<=> |x| + 5 = 37
<=> |x| = 37 - 5 = 32
=> x \(\in\) {32 ; -32}
b)|-6| . |x| = |54|
<=> 6 . |x| = 54
|x| = 54 : 6 = 9
=> x \(\in\){9;-9}
c) |x| > 21
Có |x| \(\ge\) 0 > 21
=> |x| \(\in\) { 22 ; 23 ; 24 ; 25 ; ....}
=> x \(\in\) { 22; -22 ; 23; -23; 24; -24; 25; -25; ....}
Bai 1:
Chứng minh
a)A=4x-x^2+3<0 với mọi x
b)B=x-x^2<0 với mọi x
c)C=2x-2x^2-5<0 với mọi x
Bài 2Tim giá trị lớn nhất của các biểu thức A,B,C ở bài 1
Đang cần gấp mọi người giúp với
Giúp mình nha:
a, (a+b-c)+(a-b+c)-(b+c-a)-(a-b-c)
b, x-(+5)-[(x+11)-(x-11)]
c, a- {(a-5)-[(a+9)-(-a+1)]}
a (a+b+c) + (a-b+c) - (b+c-a) - (a-b-c)
=a+b+c+a-b+c-b-c+a-a+b+c
= (a+a+a-a) + (b-b+b-b) + (c+c+c-c)
= a x 2 + 0 + c x 2
= 2 x (a + c)
\(\left(a+b-c\right)+\left(a-b+c\right)-\left(a-b-c\right)\)
\(=a+b-c+a-b+c-a+b+c\)
\(=\left(a+a-a\right)+\left(b-b+b\right)+\left(c-c+c\right)\)
\(=a+b+c\)
\(x-\left(+5\right)-\left[\left(x+11\right)-\left(x-11\right)\right]\)
\(=x-5-\left[x+11-x+11\right]\)
\(=x-5-\left[x-x+11+11\right]\)
\(=x-5-22\)
\(=x-27\)
\(a-\left\{\left(a-5\right)-\left[\left(a+9\right)-\left(-a+1\right)\right]\right\}\)
\(=a-\left\{a-5-\left[a+9+a-1\right]\right\}\)
\(=a-\left\{a-5-\left[a+a+9-1\right]\right\}\)
\(=a-\left\{a-5-\left[2a+8\right]\right\}\)
\(=a-\left\{a-5-2a-8\right\}\)
\(=a-a+5+2a+8\)
\(=2a+13=2\left(a+6\right)+1\)
bai1:viet tap hop sau bang cach liet ke cac cac phan tu
a) A={x thuocZ / - 5<x<5} b)B={x thuoc N /10<_x_<20
a: A={-4;-3;-2;-1;0;1;2;3;4}
b: B={10;11;12;...;18;19;20}
bai1:viet tap hop sau bang cach liet ke cac cac phan tu
a) A={x thuocZ / - 5<x<5} b)B={x thuoc N /10<_x_<20