Tập giá trị của hàm số y = cos x là:
A . ℝ
B . ( - ∞ , 0 ]
C . ( 0 , + ∞ )
D . - 1 , 1
Cho hàm số y=f(x) liên tục trên ℝ và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình f(cos x) = -2m + 1 có nghiệm thuộc khoảng 0 ; π 2 là
A. (-1;1]
B. (0;1)
C. (-1;1)
D. (0;1]
Cho f x là hàm đa thức thỏa mãn f x - x f 1 - x = x 4 - 5 x 3 + 12 x 2 - 4 ∀ x ∈ ℝ . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f x trên tập D = x ∈ ℝ | x 4 - 10 x 2 + 9 ≤ 0 . Giá trị của 21 m + 6 M + 2019 bằng
A. 2235.
B. 2319.
C. 3045.
D. 3069.
Cho hàm số y = m - 1 x 3 - 3 m + 2 x 2 - 6 m + 2 x + 1
Tập giá trị của m để y ' ≥ 0 ∀ x ∈ ℝ là
A. [ 3 ; + ∞ )
B. ∅
C. [ 4 2 ; + ∞ )
D. [ 1 ; + ∞ )
Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - 1 + 2 . cos x 2 - 3 . sin x + cos x trên ℝ . Biểu thức M + N + 2 có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D . 2 + 3 + 2
Cho a , b ∈ ℝ , 0 < a < b, hàm số y = f(x) có đạo hàm trên ℝ thỏa mãn f'(x) < 0, ∀ x ∈ ( a ; b ) . Giá trị nhỏ nhất của hàm số đã cho trên đoạn [a;b] bằng
A. f(b)
B. f a + b 2
C. f(a)
D. f a b
Chọn A
Hàm số y = f(x) thỏa mãn f'(x) < 0 ∀ x ∈ ( a ; b ) nên hàm số nghịch biến trên (a;b).
Do đó
Khẳng định nào sau đây là sai?
A. Hàm số \(y = \cos x\) có tập xác định là \(\mathbb{R}\)
B. Hàm số \(y = \cos x\) có tập giá trị là [-1;1]
C. Hàm số \(y = \cos x\) là hàm số lẻ
D. Hàm số \(y = \cos x\) tuần hoàn với chu kỳ \(2\pi \)
Ta có: \(y = \cos x\)
\(y\left( { - x} \right) = \cos \left( { - x} \right) = \cos x = y\)
Suy ra hàm số \(y = \cos x\) là hàm số chẵn
Vậy ta chọn đáp án C
Cho hàm số y = ( m - 1 ) x 3 - 3 ( m + 2 ) x 2 - 6 ( m + 2 ) x + 1 . Tập giá trị của m để y ' ≥ 0 ∀ x ∈ ℝ là
A. [3;+ ∞ )
B. ∅
C. [ 4 2 ;+ ∞ )
D. [1;+ ∞ )
Chọn B.
Ta có:
Nếu m = 1 thì y' = -18x-18 ⇔ x ≤ -1
Do đó m = 1 không thỏa mãn yêu cầu bài toán.
Nếu
Cho hàm số y = f x có f ' x > 0, ∀ x ∈ ℝ . Tìm tập tất cả các giá trị thực của x để f 1 x < f 1 .
A. − ∞ ; 0 ∪ 0 ; 1
B. 0 ; 1
C. 1 ; + ∞
D. − ∞ ; 1
Đáp án C
Theo giả thiết f ' x > 0, ∀ x ∈ R , do đó f 1 x < f 1 ⇔ 1 x < 1 ⇔ x > 1
Suy ra với x ∈ 1, + ∞ thì f 1 x < f 1 . Chọn phương án C.
Cho bài toán: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2 x 4 − 4 x 2 + 3 . Dưới đây là lời giải của học sinh:
* Bước 1: Tập xác định D = ℝ . Đạo hàm y ' = 8 x 3 − 8 x .
* Bước 2: Cho y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .
* Bước 3: Tính y 0 = 3 ; y − 1 = y 1 = 1 . Vậy giá trị lớn nhất của hàm số là 3, và giá trị nhỏ nhất là 1.
Lời giải trên đúng hay sai? Nếu sai thì giải sai từ bước mấy?
A. Bước 2
B. Lời giải đúng
C. Bước 3
D. Bước 1
Đáp án C
Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .
Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3 trên R
* Bước 1: Tập xác định D = ℝ . Đạo hàm y ' = 8 x 3 − 8 x .
* Bước 2: Cho y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .
* Bước 3: Ta có bảng biến thiên sau:
Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.